GENERALIZED CHRISTOFFEL FUNCTIONS

Haewon Joung

Abstract

Let $W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)$. Associated with the weight W, upper and lower bounds of the generalized Christoffel functions for generalized nonnegative polynomials are obtained.

1. Introduction

A generalized nonnegative algebraic polynomial is a function of the type

$$
f(z)=|\omega| \prod_{j=1}^{m}\left|z-z_{j}\right|^{r_{j}} \quad(0 \neq \omega \in \mathbb{C})
$$

with $r_{j} \in \mathbb{R}^{+}, z_{j} \in \mathbb{C}$, and the number

$$
n \stackrel{\text { def }}{=} \sum_{j=1}^{m} r_{j}
$$

is called the generalized degree of f.
We denote by GANP_{n} the set of all generalized nonnegative algebraic polynomials of degree at most $n \in \mathbb{R}^{+}$and we denote by \mathbb{P}_{n} the set of all polynomials of degree at most $n=0,1,2, \cdots$.

Using

$$
\left|z-z_{j}\right|^{r_{j}}=\left(\left(z-z_{j}\right)\left(z-\bar{z}_{j}\right)\right)^{r_{j} / 2}, \quad z \in \mathbb{R}
$$

we can easily check that when $f \in \mathrm{GANP}_{n}$ is restricted to the real line, then it can be written as

$$
f=\prod_{j=1}^{m} P_{j}^{r_{j} / 2}, \quad 0 \leq P_{j} \in \mathbb{P}_{2}, \quad r_{j} \in \mathbb{R}^{+}, \quad \sum_{j=1}^{m} r_{j} \leq n,
$$

Received March 30, 2010. Revised April 27, 2010. Accepted May 4, 2010.
2000 Mathematics Subject Classification: 42C05.
Key words and phrases: Christoffel functions, generalized polynomials, Freud weights.
which is the product of nonnegative polynomials raised to positive real powers. Many properties of generalized nonnegative polynomials were investigated in a series of papers ($[1,2,3,4]$).

Let $w(x)$ be a function, positive in $(-\infty, \infty)$, for which all moments $\int_{-\infty}^{\infty} x^{j} w(x) d x, j=0,1,2, \cdots$, are finite. Let $p_{n}\left(w^{2} ; x\right), n=0,1,2, \cdots$, be the sequence of orthonormal polynomials for $w^{2}(x)$, that is,

$$
\begin{aligned}
\int_{-\infty}^{\infty} p_{n}\left(w^{2} ; x\right) p_{m}\left(w^{2} ; x\right) w^{2}(x) d x & =1, \quad m=n \\
& =0, \quad m \neq n
\end{aligned}
$$

The classical Christoffel functions are defined by

$$
\begin{aligned}
\lambda_{n}(w ; x) & =\min _{P \in \mathbb{P}_{n-1}} \int_{-\infty}^{\infty} \frac{(P(t) w(t))^{2} d t}{(P(x))^{2}} \\
& =\left(\sum_{k=0}^{n-1}\left(p_{k}\left(w^{2} ; x\right)\right)^{2}\right)^{-1},
\end{aligned}
$$

for $n=1,2,3, \cdots$.
Next we define generalized Christoffel functions. Let $0<p<\infty$. Then the generalized Christoffel functions for ordinary polynomials are defined by

$$
\lambda_{n, p}(w ; x)=\min _{P \in \mathbb{P}_{n-1}} \int_{-\infty}^{\infty} \frac{|P(t) w(t)|^{p}}{|P(x)|^{p}} d t, \quad n \in \mathbb{N} .
$$

The generalized Christoffel functions for generalized nonnegative polynomials are defined by

$$
\omega_{n, p}(w ; x)=\inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{(f(t) w(t))^{p}}{f^{p}(x)} d t, \quad n \in \mathbb{R}^{+} .
$$

The upper and lower bounds of the classical Christoffel functions for various weights were investigated in [5], [13]and [11] and for the generalized Christoffel functions for ordinary polynomials, their bounds were obtained in [12]. When w is supported on $[-1,1]$, upper and lower bounds of the generalized Christoffel functions $\omega_{n, p}$ for generalized nonnegative polynomials were obtained in [4], and for the Freud weights $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$, upper and lower bounds of $\omega_{n, p}$ were given in [6].

In this paper we obtain upper and lower bounds of the generalized Christoffel functions $\omega_{n, p}(W ; x)$ for generalized nonnegative polynomials where $W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)$.

Associated with the Freud weight $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>0$, there are Mhaskar-Rahmanov-Saff numbers $a_{n}=a_{n}(\alpha)$, which is the positive solution of the equation

$$
n=\frac{2}{\pi} \int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-\frac{1}{2}} d t, \quad n \in \mathbb{R}^{+}
$$

where $Q(x)=|x|^{\alpha}, \alpha>0$. Explicitly,

$$
a_{n}=a_{n}(\alpha)=\left(\frac{n}{\lambda_{\alpha}}\right)^{1 / \alpha}, \quad n \in \mathbb{R}^{+}
$$

where

$$
\lambda_{\alpha}=\frac{2^{2-\alpha} \Gamma(\alpha)}{\{\Gamma(\alpha / 2)\}^{2}} .
$$

Its importance lies partly in the identity [9]

$$
\left\|P W_{\alpha}\right\|_{L^{\infty}(\mathbb{R})}=\left\|P W_{\alpha}\right\|_{L^{\infty}\left(\left[-a_{n}, a_{n}\right]\right)}, \quad P \in \mathbb{P}_{n}
$$

Now we state our results. For upper bounds of $\omega_{n, p}(W ; x)$, we have the following.

Theorem 1.1. Let $0<p<\infty$. Let

$$
\begin{aligned}
W(x) & =\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right) \\
& =\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot W_{\alpha}(x)
\end{aligned}
$$

where $\alpha>1, x_{k}, \gamma_{k} \in \mathbb{R}$ and $p \gamma_{k}>-1$, for $k=1, \cdots, m$. Let

$$
W_{n}(x)=\prod_{k=1}^{m}\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right), \quad n \in \mathbb{R}^{+}
$$

Let $M=2 \sum_{\gamma_{k}<0}\left(-\gamma_{k}\right)$. Then there exist positive constants C_{1} and δ such that

$$
\omega_{n, p}(W ; x) \leq C_{1} \frac{a_{n}}{n} W_{n}^{p}(x), \quad|x| \leq \delta a_{n}, \quad M \leq n \in \mathbb{R}^{+} .
$$

For lower bounds of $\omega_{n, p}(W ; x)$, we have the following.

Theorem 1.2. Let $\epsilon>0$ and $0<p<\infty$. Let

$$
\begin{aligned}
W(x) & =\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right) \\
& =\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot W_{\alpha}(x)
\end{aligned}
$$

where $\alpha>1, x_{k}, \gamma_{k} \in \mathbb{R}$ and $p \gamma_{k}>-1$, for $k=1, \cdots, m$. Let

$$
W_{n}(x)=\prod_{k=1}^{m}\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right), \quad n \in \mathbb{R}^{+} .
$$

Then there exist positive constants C_{2} such that

$$
\omega_{n, p}(W ; x) \geq C_{2} \frac{a_{n}}{n} W_{n}^{p}(x), \quad x \in \mathbb{R}, \quad \epsilon \leq n \in \mathbb{R}^{+}
$$

Throughout this paper we write $g_{n}(x) \sim h_{n}(x)$ if for every n and for every x in consideration

$$
0<c_{1} \leq \frac{g_{n}(x)}{h_{n}(x)} \leq c_{2}<\infty
$$

and $g(x) \sim h(x), n \sim N$ have similar meanings.

2. Proof of Theorems

In order to prove Theorems, first we need infinite finite range inequalities for generalized polynomials with the Freud weight $W_{\alpha}(x)=$ $\exp \left(-|x|^{\alpha}\right)$. We restate Theorem 2.2 in [6. p. 124].

Lemma 2.1. Let $\epsilon>0$ and $d>0$. Let $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$. Let

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\}, \quad n \in \mathbb{R}^{+}
$$

If $0<p<\infty$, then there exist positive constants B^{*} and C_{1} such that for all measurable sets $\Delta_{n} \subset\left[-B^{*} a_{n}, B^{*} a_{n}\right]$ with $m\left(\Delta_{n}\right) \leq s_{n} / 2$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f^{p}(x) W_{\alpha}^{p}(x) d x \leq C_{1} \int|x| \leq B^{*} a_{n} f^{p}(x) W_{\alpha}^{p}(x) d x, \tag{2.1}
\end{equation*}
$$

for all $f \in \operatorname{GANP}_{n}, \epsilon \leq n \in \mathbb{R}^{+}$.
Proof. See the proof of Theorem 2.2 in [6. p. 124].

For the estimates of $\omega_{n, p}\left(W_{\alpha} ; x\right)$, we need the following lemma, which is the restatement of Theorem 2.3 in [6, p. 125].

Lemma 2.2. Let $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$. Let $0<p<\infty$. Then

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \geq C \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad x \in \mathbb{R}, \quad n \in \mathbb{R}^{+},
$$

and

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \leq \lambda_{[n]+1, p}\left(W_{\alpha} ; x\right), \quad x \in \mathbb{R}, \quad n \in \mathbb{R}^{+},
$$

where $[n]$ denotes the integer part of n.
Proof. See the proof of Theorem 2.3 in [6, p. 125].
Remark. It is well known (see, for example, [8]) that if $\alpha>1$, then there exist positive constants C_{1} and C_{2} depending on p and α, such that

$$
\lambda_{[n]+1, p}\left(W_{\alpha} ; x\right) \leq C_{1} \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad|x| \leq C_{2} a_{n} .
$$

Consequently

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \sim \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad|x| \leq C_{2} a_{n} .
$$

Now we prove our results.

Proof of Theorem 1.1.

Proof. Let $0<p<\infty$. Let

$$
W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)
$$

and

$$
W_{n}(x)=\prod_{k=1}^{m}\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)
$$

where $n \in \mathbb{R}^{+}, \alpha>1, x_{k}, \gamma_{k} \in \mathbb{R}$ and $p \gamma_{k}>-1$, for $k=1, \cdots, m$. Let

$$
v_{k}(x)=\left|x-x_{k}\right|^{\gamma_{k}}, \quad 1 \leq k \leq m
$$

and

$$
W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right) .
$$

Then

$$
W(x)=\prod_{k=1}^{m} v_{k}(x) \cdot W_{\alpha}(x)
$$

Assume that

$$
\gamma_{k}<0, \quad 1 \leq k \leq i
$$

and

$$
\gamma_{k} \geq 0, \quad i<k \leq m
$$

Let

$$
M=2 \sum_{k=1}^{i}\left(-\gamma_{k}\right) .
$$

By Theorem 1.1 in [7], there exist constants $C>0, B>0$ and $d>0$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f^{p}(t) W^{p}(t) d t \leq C \int_{I_{n} \backslash J_{n}} f^{p}(t) W^{p}(t) d t \tag{2.2}
\end{equation*}
$$

for $f \in \mathrm{GANP}_{n}$, where

$$
I_{n}=\left[-B a_{n}, B a_{n}\right]
$$

and

$$
J_{n}=\bigcup_{k=1}^{m}\left(x_{k}-\frac{d a_{n}}{n}, x_{k}+\frac{d a_{n}}{n}\right)
$$

Now denote by $P_{j}(\alpha, \beta, x),(\alpha>-1, \beta>-1), j=0,1,2, \cdots$, the orthonormalized Jacobi polynomials and let

$$
K_{\ell}(\alpha, \beta, x)=\sum_{j=0}^{\ell-1} P_{j}^{2}(\alpha, \beta, x)
$$

Let

$$
Q_{\ell, k}(x)=\frac{1}{\ell} K_{\ell}\left(-\frac{1}{2}, \frac{\gamma_{k}-1}{2}, 2 x^{2}-1\right), \quad \ell \in \mathbb{N}, \quad i<k \leq m .
$$

It is well known (see [10, Lemma 2, p. 241] and [12, p.108]) that

$$
Q_{\ell, k}(x) \sim\left(|x|+\frac{1}{\ell}\right)^{-\gamma_{k}}, \quad|x| \leq 1, \quad \ell \in \mathbb{N}, \quad i<k \leq m
$$

Using $Q_{\ell, k}$, we can construct polynomials $R_{n, k}, i<k \leq m$, which has degree at most $n / 4(m-i)$ and

$$
R_{n, k}(t) \sim\left(\left|t-x_{k}\right|+\frac{a_{n}}{n}\right)^{-\gamma_{k}}, \quad t \in I_{n}
$$

and

$$
R_{n, k}(t) \sim\left|t-x_{k}\right|^{-\gamma_{k}}=v_{k}^{-1}(t), \quad t \in I_{n} \backslash J_{n}
$$

Now let $n \geq M$. Then

$$
\begin{aligned}
\omega_{n, p} & (W ; x)=\inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
\leq & c_{1} \inf _{f \in \operatorname{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
\leq & c_{1} \inf _{f \in \operatorname{GANP}_{n / 4}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) v_{1}^{-p}(t) \cdots v_{i}^{-p}(t) R_{n, i+1}^{p}(t) \cdots R_{n, m}^{p}(t) W^{p}(t)}{f^{p}(x) v_{1}^{-p}(x) \cdots v_{i}^{-p}(x) R_{n, i+1}^{p}(x) \cdots R_{n, m}^{p}(x)} d t \\
\leq & c_{1} v_{1}^{p}(x) \cdots v_{i}^{p}(x) R_{n, i+1}^{-p}(x) \cdots R_{n, m}^{-p}(x) \\
& \quad \inf _{f \in \operatorname{GANP}_{n / 4}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) W_{\alpha}^{p}(t)}{f^{p}(x)} d t .
\end{aligned}
$$

Hence, by Lemma 2.2, there exists some $\delta>0$ such that if $|x| \leq \delta a_{n}$ and $x \notin J_{n}$,

$$
\begin{equation*}
\omega_{n, p}(W ; x) \leq c_{2} \frac{a_{n}}{n} W_{n}^{p}(x) . \tag{2.3}
\end{equation*}
$$

If $x \in J_{n}$, then using the above method and

$$
v_{k}^{p}(t) \leq\left(\frac{d a_{n}}{n}\right)^{p \gamma_{k}}, \quad t \in I_{n} \backslash J_{n}, \quad 1 \leq k \leq i
$$

we obtain

$$
\begin{aligned}
\omega_{n, p}(W ; x) & =\inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
& \leq c_{1} \inf _{f \in \operatorname{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
& \leq c_{1} \prod_{k=1}^{i}\left(\frac{d a_{n}}{n}\right)^{p \gamma_{k}} \inf _{f \in \mathrm{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) v_{i+1}^{p}(t) \cdots v_{m}^{p}(t) W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
& \leq c_{3} \frac{a_{n}}{n} W_{n}^{p}(x), \quad|x| \leq \delta a_{n} .
\end{aligned}
$$

From (2.3) and the above inequality, we have

$$
\omega_{n, p}(W ; x) \leq c_{4} \frac{a_{n}}{n} W_{n}^{p}(x),
$$

for $|x| \leq \delta a_{n}$ and $n \geq M$, hence, Theorem 1.1 is proved.

Proof of Theorem 1.2.

Proof. Let $\epsilon>0$ and $0<p<\infty$. For simplicity we consider the weight

$$
W(x)=\left|x-x_{1}\right|^{\gamma_{1}}\left|x-x_{2}\right|^{\gamma_{2}} W_{\alpha}(x)
$$

where

$$
W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right)
$$

and

$$
\gamma_{1}<1 \text { and } \gamma_{2} \geq 1
$$

General case follows by the same method. Now let

$$
\beta(n)=5 n+\gamma_{2} .
$$

Let B^{*} be the constant which satisfies (2.1). Choose $B>0$ big enough so that

$$
\begin{equation*}
B^{*} a_{\beta(n)} \leq B a_{n}, \quad \text { for } n \geq \epsilon, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{k}\right|<B a_{n}, \quad \text { for } k=1,2, \text { and } n \geq \epsilon . \tag{2.5}
\end{equation*}
$$

Let

$$
I_{n}=\left[-B a_{n}, B a_{n}\right],
$$

and let

$$
A_{n, k}=\left(x_{k}-\frac{d a_{n}}{n}, x_{k}+\frac{d a_{n}}{n}\right), \quad k=1,2
$$

and

$$
J_{n}=\cup_{k=1}^{2} A_{n, k} .
$$

Here, we can choose $d \in(0,1)$ small enough so that $A_{n, k}$'s are disjoint and $J_{n} \subset I_{n}$ and

$$
\begin{equation*}
m\left(J_{n}\right)=\frac{4 d a_{n}}{n} \leq a_{n} \tag{2.6}
\end{equation*}
$$

Similarly as done in the proof of Theorem 1.1, we can construct the polynomial $R_{n, 1}$ such that $R_{n, 1}$ has degree at most $4 n$ and

$$
\begin{equation*}
R_{n, 1}(x) \sim\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{\gamma_{1}}, \quad x \in I_{n}, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n, 1}(x) \sim\left|x-x_{1}\right|^{\gamma_{1}}, \quad x \in I_{n} \backslash A_{n, 1} . \tag{2.8}
\end{equation*}
$$

Note that
(2.9) $c_{1}(p)(|a|+|b|)^{p} \leq\left(|a|^{p}+|b|^{p}\right) \leq c_{2}(p)(|a|+|b|)^{p}, \quad(0<p<\infty)$.

If $x \notin A_{n, 2}$, then

$$
\left|x-x_{2}\right| \geq \frac{d}{2}\left(\left|x-x_{2}+\frac{a_{n}}{n}\right|+\left|x-x_{2}-\frac{a_{n}}{n}\right|\right)
$$

hence by (2.9),

$$
\begin{equation*}
\left|x-x_{2}\right|^{p \gamma_{2}} \geq c_{3}\left(\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}}+\left|x-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}}\right) \tag{2.10}
\end{equation*}
$$

for $x \notin A_{n, 2}$.
Then by (2.8) and (2.10),

$$
\begin{aligned}
\omega_{n, p} & (W ; x)=\inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
\geq & \inf _{f \in \mathrm{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) W^{p}(t)}{f^{p}(x)} d t \\
\geq & c_{4} \inf _{f \in \mathrm{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
\geq & c_{5} \inf _{f \in \operatorname{GANP}_{n}}\left(\int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t\right. \\
\quad & \left.\quad \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t\right)
\end{aligned}
$$

$(2.11) \geq$

$$
\begin{aligned}
& c_{5}\left(\inf _{f \in \operatorname{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t\right. \\
& \left.\quad+\inf _{f \in \operatorname{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t\right) .
\end{aligned}
$$

Since

$$
f(t) R_{n, 1}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{\gamma_{2}}
$$

has degree at most $\beta(n)=\mathcal{O}(n)$, by Lemma 2.1 and (2.4) and (2.6), we have for $x \in I_{n}, n \geq \epsilon$,

$$
\begin{aligned}
& \inf _{f \in \mathrm{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
& \quad \geq c_{6} \inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
& \quad=c_{6} R_{n, 1}^{p}(x)\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} \\
& \quad \times \inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x) R_{n, 1}^{p}(x)\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}}} d t \\
& \quad \geq c_{6} R_{n, 1}^{p}(x)\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} \inf _{f \in \mathrm{GANP}_{\beta(n)}} \int_{-\infty}^{\infty} \frac{f^{p}(t) W_{\alpha}^{p}(t)}{f^{p}(x)} d t,
\end{aligned}
$$

hence, by Lemma 2.2 and (2.7),

$$
\begin{align*}
& \inf _{f \in \mathrm{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
& \quad \geq c_{7} \frac{a_{n}}{n} R_{n, 1}^{p}(x)\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(x) \\
& \quad \geq c_{8} \frac{a_{n}}{n}\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{1}}\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(x), \tag{2.12}
\end{align*}
$$

for $x \in I_{n}, n \geq \epsilon$.
Similarly, we obtain for $x \in I_{n}, n \geq \epsilon$,

$$
\begin{align*}
& \inf _{f \in \operatorname{GANP}_{n}} \int_{I_{n} \backslash J_{n}} \frac{f^{p}(t) R_{n, 1}^{p}(t)\left|t-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(t)}{f^{p}(x)} d t \\
& \quad \geq c_{9} \frac{a_{n}}{n}\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{1}}\left|x-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}} W_{\alpha}^{p}(x) . \tag{2.13}
\end{align*}
$$

Then by (2.11), (2.12), (2.13) and (2.9), we have for $x \in I_{n}, n \geq \epsilon$,

$$
\begin{aligned}
& \omega_{n, p}(W ; x) \\
& \geq c_{10} \frac{a_{n}}{n}\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{1}} \\
& \quad \quad\left(\left|x-x_{2}+\frac{a_{n}}{n}\right|^{p \gamma_{2}}+\left|x-x_{2}-\frac{a_{n}}{n}\right|^{p \gamma_{2}}\right) W_{\alpha}^{p}(x) \\
& \geq c_{11} \frac{a_{n}}{n}\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{1}} \\
& \quad\left(\left|x-x_{2}+\frac{a_{n}}{n}\right|+\left|x-x_{2}-\frac{a_{n}}{n}\right|\right)^{p \gamma_{2}} W_{\alpha}^{p}(x) .
\end{aligned}
$$

Since

$$
\left|x-x_{2}+\frac{a_{n}}{n}\right|+\left|x-x_{2}-\frac{a_{n}}{n}\right| \geq\left(\left|x-x_{2}\right|+\frac{a_{n}}{n}\right)
$$

we obtain

$$
\begin{aligned}
& \omega_{n, p}(W ; x) \\
& \quad \geq c_{11} \frac{a_{n}}{n}\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{1}}\left(\left|x-x_{2}\right|+\frac{a_{n}}{n}\right)^{p \gamma_{2}} W_{\alpha}^{p}(x) \\
& \quad=c_{11} \frac{a_{n}}{n} W_{n}^{p}(x)
\end{aligned}
$$

for $x \in I_{n}, n \geq \epsilon$.
Then by Theorem 1.3 in [7] and the above inequality, we have

$$
\begin{aligned}
\left\|f W_{n}\right\|_{L^{\infty}(\mathbb{R})} & \leq c_{12}\left\|f W_{n}\right\|_{L^{\infty}\left(I_{n}\right)} \\
& \leq c_{13}\left(\frac{n}{a_{n}}\right)^{\frac{1}{p}}\|f W\|_{L^{p}(\mathbb{R})}
\end{aligned}
$$

thus,

$$
\omega_{n, p}(W ; x) \geq c_{14} \frac{a_{n}}{n} W_{n}^{p}(x), \quad x \in \mathbb{R}, \quad n \geq \epsilon,
$$

which proves Theorem 1.2.

References

[1] T. Erdélyi, Bernstein and Markov type inequalities for generalized non-negative polynomials, Canad. J. Math. 43(1991), 495-505.
[2] T. Erdélyi, Remez-type inequalities on the size of generalized non-negative polynomials, J. Lond. Math. Soc. 45(1992), 255-264.
[3] T. Erdélyi, A. Máté, and P. Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8(1992), 241-255.
[4] T. Erdélyi and P. Nevai, Generalized Jacobi weights, Christoffel functions and zeros of orthogonal polynomials, J. Approx. Theory 69(1992), 111-132.
[5] G. Freud, On Markov-Bernstein type inequalities and their applications, J. Approx. Theory $\mathbf{1 9}$ (1977), 22-37.
[6] H. Joung, Estimates of Christoffel functions for generalized polynomils with exponential weights, Commun. Korean Math. Soc. 14(1)(1999), 121-134.
[7] H. Joung, Infinite finite range inequalities, Korean J. Math. 18(1)(2010), 63-77.
[8] A. L. Levin and D. S. Lubinsky, Canonical products and the weights $\exp \left(-|x|^{\alpha}\right)$, $\alpha>1$, with applications, J. Approx. Theory 49(1987), 149-169.
[9] H. N. Mhaskar and E. B. Saff, Where does the Sup Norm of a Weighted Polynomial Live?, Constr. Approx. 1(1985), 71-91.
[10] P. Nevai, Bernstein's inequality in L_{p} for $0<p<1$, J. Approx. Theory. 27(1979), 239-243.
[11] P. Nevai, Geza Freud. Orthogonal Polynomials and Christoffel Functions. A Case Study, J. Approx. Theory. 48(1986), 3-167.
[12] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213, 1979.
[13] P. Nevai, Polynomials orthonormal on the real line with weight $|x|^{\alpha} \exp \left(-|x|^{\beta}\right)$, I, Acta Math. Hungar. 24(1973), 407-416.

Department of mathematics
Inha University
Incheon 402-751, Korea
E-mail: hwjoung@inha.ac.kr

