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GENERALIZED CHRISTOFFEL FUNCTIONS
HaAaEwoON JOUNG

ABSTRACT. Let W (z) = [[j-, |x — xx|™ - exp(—|z|*). Associated
with the weight W, upper and lower bounds of the generalized
Christoffel functions for generalized nonnegative polynomials are ob-
tained.

1. Introduction

A generalized nonnegative algebraic polynomial is a function of the
type

F(2) = |w| H |z — 2|7 (0#weCQ)

with r; € R, z; € C, and the number
def @
n = T
j=1
is called the generalized degree of f.

We denote by GANP,, the set of all generalized nonnegative algebraic
polynomials of degree at most n € R* and we denote by P, the set of
all polynomials of degree at most n =0,1,2,---.

Using

s— sl = (e —2) (= 5))"2, z€R,
we can easily check that when f € GANP,, is restricted to the real line,
then it can be written as

f:l_[P;J'/Q7 0< P ePy, r;eRT, ergn,
j=1 J=1
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which is the product of nonnegative polynomials raised to positive real
powers. Many properties of generalized nonnegative polynomials were
investigated in a series of papers ([1,2,3,4]).

Let w(x) be a function, positive in (—oo, o), for which all moments
ffooo Yw(x)dr, j =0,1,2,---, are finite. Let p,(w?x), n =0,1,2,---,
be the sequence of orthonormal polynomials for w?(z), that is,

/ pn(wQ;x)pm(wz;x)w2(m)dm = 1, m=n,

—00

= 0, m#n.
The classical Christoffel functions are defined by

) = min * (P(t)w(t))*dt
Mnlwio) = /oo (P(x))?

PeP, 1
n—1 -1
= ( (pk(wZ;fL"))?) 7
k=0
forn=1,2,3,---.

Next we define generalized Christoffel functions. Let 0 < p < oo.

Then the generalized Christoffel functions for ordinary polynomials are
defined by

[ legwr,

N.
- [P@) "e

Anp(w;z) = mi
p(wjz) = min
The generalized Christoffel functions for generalized nonnegative poly-
nomials are defined by

Whp(w; ) = feé%fNPn /_OO %dt, neR"

The upper and lower bounds of the classical Christoffel functions for
various weights were investigated in [5], [13]and [11] and for the gener-
alized Christoffel functions for ordinary polynomials, their bounds were
obtained in [12]. When w is supported on [—1, 1], upper and lower
bounds of the generalized Christoffel functions w,, , for generalized non-
negative polynomials were obtained in [4], and for the Freud weights
W (z) = exp(—|z|*), @ > 1, upper and lower bounds of w,, , were given
in [6].
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In this paper we obtain upper and lower bounds of the generalized
Christoffel functions w,, ,(W; x) for generalized nonnegative polynomials
where W(z) = [[}L, |& — x| - exp(—|z|*).

Associated with the Freud weight W, (z) = exp(—|z|*), a > 0, there
are Mhaskar-Rahmanov-Saff numbers a,, = a,(«), which is the positive
solution of the equation

9 1
n= —/ a,tQ' (ant)(1 — t2)_%dt, n € RY,
T Jo
where Q(z) = |z|*, a > 0. Explicitly,
n 1/a
a, = ap(a) = (—) , neRT,
Aa
where
227°T ()

Ao = Taf2))?

Its importance lies partly in the identity [9]
[PWallpeo®) = [PWalL(-anan): P € Pn.

Now we state our results. For upper bounds of w, ,(W;x), we have
the following.

THEOREM 1.1. Let 0 < p < co. Let

m

W) = [l -l - exp(—lal)
k=1

= [Tl —al™ Wala),
k=1

where o > 1, xp, v, € R and py, > —1, fork=1,--- ;m. Let
" A\ Yk
Walw) = [T (e = axl + 22) - exp(=lel®), neR*.
@) =TT (le =l +52)" sl

Let M = 2% _,(—). Then there exist positive constants Cy and §
such that

Wnp(Wiz) < Clil—anl’(x), |z| < da,, M <neR".

For lower bounds of wy, ,(W;x), we have the following.
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THEOREM 1.2. Let € > 0 and 0 < p < co. Let

W(z) = [[lz— 2™ - exp(—|z|*)
k=1

= [ lz =z Walw),
k=1
where a > 1, xp, v, € R and py, > —1, fork=1,--- ;m. Let

m
Ay \ VE
W (z) = k[_[l (1 — 2l + g") Cexp(—|z]*), neR*.
Then there exist positive constants Cy such that

Qn
wnp(Wix) > Co—WP(z), z€R, e<neR".
n
Throughout this paper we write g,(z) ~ h,(x) if for every n and for
every x in consideration

gn(x)
hn(z)

and g(z) ~ h(z), n ~ N have similar meanings.

0<c < < ey < 00,

2. Proof of Theorems

In order to prove Theorems, first we need infinite finite range in-
equalities for generalized polynomials with the Freud weight W, (z) =
exp(—|x|*). We restate Theorem 2.2 in [6. p. 124].

LEMMA 2.1. Let ¢ > 0 and d > 0. Let W, (z) = exp(—|z|¥), a > 1.

Let y
a
Sp = min{—n,an} , neRT
n

If 0 < p < 0o, then there exist positive constants B* and C such that
for all measurable sets A,, C [—B*an, B*a,] with m(A,) < s,/2,

2y [ remeea [, g, PO,
- x ¢ A,

for all f € GANP,,, e <n € R".
Proof. See the proof of Theorem 2.2 in [6. p. 124]. O
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For the estimates of w, ,(W,; ), we need the following lemma, which
is the restatement of Theorem 2.3 in [6, p. 125].
LEMMA 2.2. Let W,(x) = exp(—|z|*), @« > 1. Let 0 < p < 0o. Then
Wnp(Wa; ) > Caiwg(x), reR, neRT,
n

and
Wn,p(Wa; .CC) < )\[n]—i-l,p(Wa; LC), T e ]Rv n e R+7
where [n| denotes the integer part of n.

Proof. See the proof of Theorem 2.3 in [6, p. 125]. O

REMARK. It is well known (see, for example, [8]) that if « > 1, then
there exist positive constants C7 and Cy depending on p and «, such
that a

A1 (Was ) < C’lgnWap(x), |z| < Caay,.

Consequently
Qn
wnp(Wai ) ~ ?Wgw)a lz| < Caay,.

Now we prove our results.
Proof of Theorem 1.1.

Proof. Let 0 < p < co. Let

W(x) =[] lx — @™ - exp(~|z]*),
k=1

and .
ap \ E N
W () g@xmwn) exp(~[z[?),
where n € R, a > 1, 2,7 € R and py, > —1, for k=1,--- ,m. Let
vp(x) = |z — |, 1<k <m,
and
Wa(z) = exp(—|z[).
Then

W(z) =[] os(x) - Wal2).
k=1
Assume that
Y% <0, 1<k<uq,
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and
>0, i<k<m.
Let

M =2 ().

By Theorem 1.1 in [7], there exist constants C' > 0, B > 0 and d > 0
such that

(2.2) /_ T pmwrmda<c [ powe@d

L\ Jn
for f € GANP,,, where

I, = [~ Ba,, Ba,]

" day, day,
Jn:U(xk_%,w%).

k=1

Now denote by Pj(a,,2), (@ > —=1,8 > —1), j = 0,1,2,---, the
orthonormalized Jacobi polynomials and let

and

/-1

Kf(aaﬁwr) = ZPJQ(O{,ﬁ,ZL‘)

J=0

Let

1 1 -1
QZ’]@<J]>:EKZ(—§,,}%2 ,2x2—1), (eN, i<k<m.

It is well known (see [10, Lemma 2, p. 241] and [12, p.108]) that

1 —Vk
Quia)~ (el +3) . k<1 CeN i<ksm

Using @y, we can construct polynomials R, ;, ¢ < k < m, which has
degree at most n/4(m — i) and

-7
Rn,k(t)~(|t—xk|+%”) Yotel,

and
Rop(t) ~ |t —zp| ™ =0 ' (t), tel,\ Jn
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Now let n > M. Then

e [P0
np (W )_feGAfNPn /OO fr(x) dat
roww

s a feé%NPn /In\Jn fr(x)
w, [ PO Ol 00
JEGANPy s Jpng,  [P(2)oy P (2) - 'vfp(iv)Rﬁ,m(fc) + B ()
< avi(@)- ()R, G () R (o)
. JrO)Wa(t)
recime /Wn o (z)

Hence, by Lemma 2.2, there exists some 0 > 0 such that if |z| < da,
and © & J,,

< g dt

X dt.

(2.3) wnp(Wiz) < c2%wg(x).

If x € J,, then using the above method and

da PYk
we obtain
o fP(HWP(E
wnpy(Wiz) = inf / wdt
’ secine, | o (o)

. fP)Wr(t)
“ fECl}ngPn /I,L\J,L fr(z)

o (da, \TE PP (1) - vb () WE(E)
cy —__ inf d
(%) e, t

o\ fEGANP, fr(x)

dt

IA

IN

< cga—nWﬁx), |z| < day,.
n
From (2.3) and the above inequality, we have
wnp(Wix) < c4a—anL’(x),
n

for |x| < da,, and n > M, hence, Theorem 1.1 is proved. ]
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Proof of Theorem 1.2.

Proof. Let ¢ > 0 and 0 < p < oo. For simplicity we consider the
weight
W(z) = |z — x| " x — 22 Wa(x),
where
Wa(x) = exp(—|z[|%)
and
v1 < 1land v > 1.

General case follows by the same method. Now let

B(n) = dn + 7.

Let B* be the constant which satisfies (2.1). Choose B > 0 big enough
so that

(2.4) B*agmy < Bay, forn >,
and
(2.5) |zk| < Ba,, fork=1,2, andn > e.
Let
I, = [-Ba,, Ba,],
and let
Apni = (xk — %,xk + %> , k=12,
n n
and

z]n - Ui:lAn,k'
Here, we can choose d € (0,1) small enough so that A, x’s are disjoint
and J, C I, and

dday,
(2.6) m(J,) = T“ < ay.

Similarly as done in the proof of Theorem 1.1, we can construct the
polynomial 7, ; such that R, ; has degree at most 4n and

Qn

(2.7) Ry1(x) ~ <|x — x| + EYI . T €I,
and

(2.8) Roi(x) ~ |z —xi|", zel,\ Anr.
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(2.9) ci(p)(lal +[b))" < ([af” + [bI") < ca(p)(la] +[6])", (0 <p < o0).

If © ¢ A, then

|z

hence by (2.9),

d

an
— o] > = ‘TI—ZCQ‘F; +|x—29— —

2

G

2l

(2.10) |x — 29" > 3 (’x—xQ—Fa—npw—F‘x—xg—%pw),
n n
for x ¢ A,,.
Then by (2.8) and (2.10),
© fPHOWP(t
Wnp (Wiz)= inf / Mdt
’ feGANP, J_ o fP(x)
P p
> inf / —f (HW(t) dt
JEGANP, [\ ;. fr(z)
P(H)R? ()|t — xo|P2WP(
S AL 10 e
FEGANP, 1\ ;. fr(x)
P()RE () [t — [P pye(t
S L A1 R il
feGANP, \ Jy fP(x)
AT e P
L\Jn fr(z)
PRD () |t — wo + 2|2 WE(t
(211> ¢ | inf / FPORLA@ [t = o2 4+ 7 Wi )t
FEGANP, [\ ;. fr(x)
o [ TR0l n g,
FEGANP, [\ 5. f7(x) '
Since

F(t)Rua(t) ’t T+ %”

Y2
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has degree at most 3(n) = O(n), by Lemma 2.1 and (2.4) and (2.6), we

have for z € I,,, n > ¢,

dt

. / PR |t = 2+ 227 Wa(0)
FEGANP, [\ ;. fr(z)
t/ FPOORE () [t — 2o + 2 [P WE(2)

() i

inf
feGANPn

= CGRn 1(1’)
fP(t) |t—x + 9 [P R (t)
dt
feGANPn/ fp |x — 9+ %}pw

o) oo P p
o [rem,
FEGANPs J o [P(x)

Ay, | P2

xr— X9+ —
n

a
> cRy, 4 (2) ‘x — 1z + Xn

hence, by Lemma 2.2 and (2.7),

dt

g, [ ZORO £ =+ 2 W)
FEGANPy [\ 5. fr(x)

P2
> @%Rﬁ,l(x) ‘a: — Ty + C: WP(x)
Tr— To+ — dn

P2

an an
(2.12) > g2 (lo =@l + n) W2(x),

forxel,, n>e.
Similarly, we obtain for z € I,,, n > ¢,

e, [ TR0l w0,
FEGANP, [\ 1 fP(x)
an

T — Ty — —
n

P72

)™ W2 (x).

(2.13) >@1<u—mp%
n
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Then by (2.11), (2.12), (2.13) and (2.9), we have for = € I, n >,

wnp(W; )
a Ay \ P71
Z Clo—n (|ZL’ — l‘1| + _n)
n n
a, |72 a, |P72
(x—x2+—n +‘x—x2——n )Wg(x)
n n
a a pn
zcll—n (‘.1'—1’1’4‘_”)
n n
a a b2
(x—xQ—l——n +’$—I‘2——n> WPE(z).
n n
Since a a a
‘x—x2+—n +’x—x2——n)2 (|x—I2|—|——n),
n n n
we obtain

wnp(W; )
(07% an\ P11 Qp \ P2
> c— <|x—x1|—|——> <|x—x2|—|——> WP(z)
n n n

(0%
a
= C11 %nWTIL)('ZC)7

forx e l,,n>ce
Then by Theorem 1.3 in [7] and the above inequality, we have

[ Wallzeo®) < caal| fWallre(r,)

1
n P
S S

n

thus,
a
Wnp(Wiz) > cpy—WP(z), xR, n>e
n

which proves Theorem 1.2. O
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