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CIRCULAR UNITS OF ABELIAN FIELDS WITH A

PRIME POWER CONDUCTOR

Jae Moon Kim and Jado Ryu∗

Abstract. For an abelian extension K of Q, let CW (K) be the
group of Washington units of K, and CS(K) the group of Sinnott
units of K. A lot of results about CS(K) have been found while
very few is known about CW (K). This is mainly because elements
in CS(K) are more explicitly defined than those in CW (K). The
aim of this paper is to find a basis of CW (K) and use it to compare
CW (K) and CS(K) when K is a subfield of Q(ζpe), where p is a
prime.

1. Introduction

For each positive integer n not congruent to 2 mod 4, we fix a primitive

nth root of 1 in C by ζn = e
2πi
n so that ζ

n
m
n = ζm whenever m|n. The

field Q(ζn) is a Galois extension of Q with Gal(Q(ζn)/Q) ' Z×n , the
multiplicative group consisting of the units of the ring Zn. So [Q(ζn) :
Q] = ϕ(n), where ϕ is the Euler ϕ function.

We denote the unit group of the ring of integers of a number field
K by E(K). It is well known that E(K) is a finitely generated abelian
group whose free part is of rank r1 + r2 − 1, where r1 is the number of
real embeddings of K and r2 is that of pairs of complex embeddings of
K. And the torsion subgroup W (K) of E(K) consists of roots of unity
in K and is a finite cyclic group. Thus

E(Q(ζn)) ' W (Q(ζn))⊕ Z 1
2
ϕ(n)−1.

Note that W (Q(ζn)) is a cyclic group generated by −ζn.
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This structure theorem for E(Q(ζn)), however, does not provide with
a basis for the unit group. In fact, even in the simplest case when n = p
is a prime, not any basis is known. Fortunately, the unit group has a
special subgroup with explicitly described generators which is called the
group of cyclotomic units. To be precise, let Vn be the multiplicative
subgroup of Q(ζn)× generated by {±ζn, 1 − ζa

n|1 ≤ a ≤ n − 1}. The
group of cyclotomic units of Q(ζn) is then defined by C(Q(ζn)) = Vn ∩
E(Q(ζn)). The elements in C(Q(ζn)) are called cyclotomic units. The
most important property of the group of cyclotomic units is the following
index formula:

[E(Q(ζn)) : C(Q(ζn))] = 2bh+
n

for some nonnegative integer b ([3]). Here h+
n is the class number of

Q(ζn)+ = Q(ζn + ζ−1
n ).

For abelian extensions, the situation is quite different. In [4], for an
abelian extension K, Sinnott defines CS(K), the group circular units of
K by

CS(K) = E(K)∩
〈
−1,NQ(ζm)/K∩Q(ζm) (1− ζa

m)
∣∣∣m, a ∈ Z,m > 1,m - a

〉
.

In that paper, he computes the index [E(K) : CS(K)], showing how the
class number of K is remarkably involved in the index.

Another subgroup of the unit group of an abelian extension K is
mentioned by Washington in [5], which we denote by CW (K). It is
simply defined by

CW (K) = C(Q(ζn))Gal(Q(ζn)/K),

where n is the conductor of K. But in this case it is not easy to compute
the index [E(K) : CW (K)] since the generators of CW (K) are not explicit
enough. It is clear that CW (K) contains CS(K). However, the index
[CW (K) : CS(K)] has not been successfully determined except for a few
special cases ([1],[2]).

The aim of this paper to compare CW (K) with CS(K) when the con-
ductor of K is a prime power(Theorem 2.5, Theorem 2.8). The method
given in this paper seems to be useful in generalizing our results to
abelian fields with arbitrary conductors. We will achieve our goal by
finding a basis of CW (K)(Theorem 2.4).

We finish this section with the index formula discovered by Sinnott
([4]).
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Theorem 1.1. Let K be a subfield of Q(ζpe). then

[E(K) : CS(K)] =

{
2[K:Q]−1hK if K is real

hK+ if K is imaginary
,

where K+ is the maximal real subfield of K.

2. Main result

We begin this section with an obvious property of a free abelian group.

Lemma 2.1. Let M be a free abelian group with a basis {x1, x2, · · · , xn}.
Then {x1, x2, · · · , xi−1, x

∗
i , xi+1, · · · , xn} also serves as a basis of M ,

where x∗i = xi +
∑

j 6=i mjxj for some integers mj.

Now we consider the cyclotomic field Q(ζpe). Let pe = q, ϕ(q) = ϕ
and ζq = ζ. Then Q(ζq)

+ is a cyclic extension of Q of degree ϕ
2
. Let

σ be a generator of Gal(Q(ζq)
+/Q). An extension of σ to Q(ζq) is also

denoted by σ. For each integer i, put v(i) = 1−ζσi

1−ζ
ζ(1−σi)/2. Note that

v(0) = 1, and that

σk (v(i)) = σk

(
1− ζσi

1− ζ
ζ(1−σi)/2

)

=
1− ζσi+k

1− ζσk ζ(σk−σi+k)/2

=

(
1− ζσi+k

1− ζ
ζ(1−σi+k)/2

)
×

(
1− ζ

1− ζσk

1

ζ(1−σk)/2

)

=
v(i + k)

v(k)
.
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Since 1− ζ−a
n = −ζ−a

n (1− ζa
n), we have

v(i) =
1− ζ−σi

1− ζ−1
ζ−(1−σi)/2

=
−ζ−σi

(1− ζσi
)

−ζ−1(1− ζ)
ζ−(1−σi)/2

=
1− ζσi

1− ζ
ζ(1−σi)/2

= v(i),

where v(i) is the complex conjugation of v(i). Hence v(i) is an element
of CW (Q(ζq)

+). The next theorem says that these elements generate
CW (Q(ζq)

+) .

Theorem 2.2. The set
{
v(i)

∣∣1 ≤ i � ϕ
2

}
forms a basis of the free

part of CW (Q(ζq)
+). That is

CW (Q(ζq)
+) =

〈
±v(i)

∣∣1 ≤ i �
ϕ

2

〉
.

Proof. See [5].

Now we find a basis of CS(K) and CW (K), where K is a subfield of
Q(ζq)

+. Put [K : Q] = r, and [Q(ζq)
+ : K] = t. So tr = 1

2
ϕ. For each i,

1 ≤ i � r, let vK(i) = NQ(ζq)+/Kv(i), where NQ(ζq)+/K is the norm from
Q(ζq)

+ to K.
In this case, the generators of CS(K) given is section 1 can be written

more explicitly. Namely,

CS(K) =

〈
±NQ(ζq)/K

(
1− ζ i

q

1− ζq

)
|1 ≤ i < ϕ

〉
.

Since NQ(ζq)/Q(ζq)+

(
1−ζa

q

1−ζq

)
=

1−ζa
q

1−ζq
· 1−ζ−a

q

1−ζ−1
q

=
(

1−ζa
q

1−ζq

)2

ζ1−a
q , we have

NQ(ζq)/K

(
1−ζσi

q

1−ζq

)
= vK(i)2. Hence we have the following theorem.

Theorem 2.3. The set {vK(i)2|1 ≤ i < r} forms a basis of the free
part of CS(K). That is

CS(K) =
〈±vK(i)2|1 ≤ i < r

〉
.

The next theorem describes a basis of CW (K) .
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Theorem 2.4. The set
{

vK(i)
∣∣∣1 ≤ i � r

}
forms a basis of the free

part of CW (K). That is

CW (K) =
〈
±vK(i)

∣∣∣1 ≤ i � r
〉

.

Proof. Since Gal(Q(ζq)
+/K) is generated by σr, we have

vK(i) =
∏

0≤m�t

σmr(v(i))

=
∏

0≤m�t

v(i + mr)

v(mr)

= v(i)
∏

1≤m�t

v(i + mr)

v(mr)
.

Then, by Lemma 2.1 and Theorem 2.2, we have

CW (Q(ζq)
+) =

〈
±vK(i)

∣∣∣1 ≤ i � r
〉
⊕

〈
v(i)

∣∣∣r ≤ i �
ϕ

2

〉
.

Let D =
〈
±vK(i)

∣∣∣1 ≤ i � r
〉
. Being a norm from Q(ζq)

+ to K, vK(i)

must be fixed by Gal(Q(ζq)
+/K), and thus an element in CW (K). Hence

D < CW (K) < CW (Q(ζq)
+) and D is direct summand of CW (Q(ζq)

+).
Also note that D is of finite index in CW (K) since rankZD = r − 1 =

rankZCW (K). Therefore D = CW (K) =
〈
±vK(i)

∣∣∣1 ≤ i � r
〉
.

Theorem 2.5. Let K be a real subfield of Q(ζpe) with [K : Q] = r.
Then

(1) [CW (K) : CS(K)] = 2r−1

(2) [E(K) : CW (K)] = hK .

Proof. From Theorem 2.3 and 2.4, we get (1). (2) follows from the
index formula given in the Theorem 1.1.

To study Washington units for imaginary subfields of Q(ζq), we need
the unit index. For an imaginary abelian field K (with an arbitrary
conductor), we define QE(K) by QE(K) = [E(K) : W (K)E(K+)] as
usual. The index QE(K) is called the unit index of K, and it is known
that QE(K) = 1 or 2. Similarly, we define QC(K) by QC(K) = [CW (K) :
W (K)CW (K+)].

Lemma 2.6. Let K be an imaginary abelian field. Then QC

∣∣∣QE.
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Proof. Note that the kernel of composition

CW (K) −→ E(K) −→ E(K)/W (K)E(K+)

is W (K)CW (K+). Hence QC

∣∣∣QE.

Corollary 2.7. If K is an imaginary subfield of Q(ζq), then

CW (K) = W (K)CW (K+).

Proof. Since QE(K) is 1 in this case, so is QC(K). The result follows
from this.

Theorem 2.8. Let K be an imaginary subfield of Q(ζq). Then
(1) [E(K) : CW (K)] = hK+

(2) [CW (K) : CS(K)] = 1.

Proof. Since E(K) = W (K)E(K+) and CW (K) = W (K)CW (K+),
we have [E(K) : CW (K)] = [E(K+) : CW (K+)] = hK+ by Theorem 2.5.
And (2) follows from the index formula in the Theorem 1.1.
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[1] C. Greither, Über relativ-invariante Kreiseinheiten und Stickelberger-
Elemente, Manuscripta Math. 80(1993), 27–43.

[2] R. Kuc̆era, On the Stickelberger ideal and circular units of some genus
fields, Tatra Mt. Math. Publ. 20(2000), 93–104.

[3] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclo-
tomic field, Ann. of Math. (2) 108(1978), 107–134.

[4] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian
field, Invent. Math. 62(1980), 181–234.

[5] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in
Math. 74, Springer-Verlag, New York/Berline, 1980.

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail : jmkim@inha.ac.kr

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail : jdryu@inha.ac.kr


