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THE CAPABILITY OF PERIODIC NEURAL NETWORK

APPROXIMATION

Nahmwoo Hahm and Bum Il Hong∗

Abstract. In this paper, we investigate the possibility of 2π-periodic
continuous function approximation by periodic neural networks. Us-
ing the Riemann sum and the quadrature formula, we show the ca-
pability of a periodic neural network approximation.

1. Introduction

There has been growing interest in neural network approximation in
recent years ([3, 5, 6, 8]) because it has many important applications
in signal processing, robotics, sequential decision making, time series
prediction and modeling, etc. A neural network computes functions that
are linear combinations of a single simple nonlinear function composed
with affine functional. A general form of feedforward neural network
with one hidden layer is

(1.1)
n∑

i=1

aiσ(bix + ci),

where σ : R → R is a univariate activation function. The Gaussian
function σ(x) = e−x2

, the squashing function σ(x) = (1 + e−x)−1 and
the generalized multiquadrics σ(x) = (1 + x2)α, α /∈ Z, are examples
of an activation function. In most papers related to the approximation
capability by neural network, they investigated the approximation of
continuous functions on a compact set and target functions were not
periodic functions.
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In this paper, we study the approximation of continuous 2π-periodic
functions by periodic neural network.

Note that the class of all trigonometric functions of order at most n is
denoted by Tn. The element in Tn has a complex expression of the form

(1.2)
∑

|j|≤n

cje
ijx,

where cj ∈ C.
For a continuous 2π-periodic function f , the norm of f is given by

‖f‖∞ := sup{|f(x)| : x ∈ [−π, π]}.
In addition, we use the symbol Sn(f) to denote the nth partial sum

of Fourier series of a periodic function f and

(1.3) Gn(f) :=
1

n

n∑

k=1

Sk(f)

represents the nth Fejer sum of f . Note that Gn(f) ∈ Tn.

2. Main results

The following lemma explains the uniform approximation by trigono-
metric polynomials for continuous 2π-periodic functions. This approxi-
mation is constructive since trigonometric polynomials are obtained from
the partial sums of Fourier series. The proof of this lemma is in [1, 7].

Lemma 2.1. Let f be a continuous 2π-periodic function on [−π, π].
Then

‖f −Gn(f)‖∞ → 0,

as n → 0.

From (1.2) and (1.3), Gn(f, x) =
∑

|j|≤n cj(f)eijx for some cj(f) ∈ C.
Thus we need to show that a periodic neural network with a minimal
constraint approximates eijx arbitrarily closed for any j ∈ Z. First of
all, we investigate the periodic neural network approximation using a
Riemann sum.
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Lemma 2.2. Let σ be a continuous 2π-periodic function with Γ :=
1
2π

∫ π

−π
σ(t)e−itdt 6= 0. Then, for a given j ∈ Z,

(2.1) ‖eij· − 1

mΓ

m∑

k=1

ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞ → 0

as m →∞.

Proof. By the substitution rule of integration, we have, for x ∈ [−π, π],

Γ · eijx =
1

2π

∫ π

−π

σ(t)e−itdt · eijx

=
1

2π

∫ π

−π

σ(t)ei(jx−t)dt

=
1

2π

∫ π

−π

σ(jx− t)eitdt.

Thus

(2.2) eijx =
1

2πΓ

∫ π

−π

σ(jx− t)eitdt.

Note that

(2.3) Nm(σ, x) :=
m∑

k=1

ei
π(2k−m)

m σ(jx− π(2k −m)

m
)
2π

m

is a Riemann sum for
∫ π

−π
σ(jx− t)e−itdt. Thus

‖eij· − 1

mΓ

m∑

k=1

ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞

= ‖ 1

2πΓ

∫ π

−π

σ(j · −t)eitdt− 1

mΓ

m∑

k=1

ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞

→ 0

as m →∞. Thus we complete the proof.

From Lemma 2.1 and Lemma 2.2, we obtain the following.
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Theorem 2.3. Let σ be a continuous 2π-periodic function with Γ :=
1
2π

∫ π

−π
σ(t)e−itdt 6= 0. For a given ε > 0 and any continuous 2π-periodic

function f , there exists a periodic neural network

(2.4) Nn,m(σ, x) :=
∑

|j|≤n

m∑

k=1

cj(f)
1

mΓ
ei

π(2k−m)
m σ(jx− π(2k −m)

m
)

such that

‖f −Nn,m(σ)‖∞ < ε,

where cj(f)’s are coefficients of Fejer sum of f .

Proof. Let ε > 0 be given. By Lemmma 2.1, there exists a Fejer sum
Gn(f) of f such that

‖f −Gn(f)‖∞ <
ε

2
.

By Lemma 2.2, there exists mj ∈ N such that
(2.5)

‖eij· − 1

mjΓ

mj∑

k=1

e
i

π(2k−mj)

mj σ(j · −π(2k −mj)

mj

)‖∞ <
ε

2j2+1(|cj(f)|+ 1)

for each j ∈ Z with |j| ≤ n.
Let m = max{mj : |j| ≤ n}. By Lemma 2.2 and (2.5), we have

‖Gn(f)−Nn,m(σ)‖∞

= ‖
∑

|j|≤n

cj(f)eij· −
∑

|j|≤n

m∑

k=1

cj(f)
1

mΓ
ei

π(2k−m)
m σ(j · −π(2k −m)

m
)‖∞

≤
∑

|j|≤n

|cj(f)| · ‖eij· −
m∑

k=1

1

mΓ
ei

π(2k−m)
m σ(j · −π(2k −m)

m
)‖∞

<
ε

2
.

Therefore a periodic neural network which is defined by

Nn,m(σ, x) :=
∑

|j|≤n

m∑

k=1

cj(f)
1

mΓ
ei

π(2k−m)
m σ(jx− π(2k −m)

m
)
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satisfies

‖f −Nn,m(σ)‖∞ ≤ ‖f −Gn(f)‖∞ + ‖Gn(f)−Nn,m(σ)‖∞
< ε.

Thus we complete the proof.

In Lemma 2.2 and Theorem 2.4, we have to use a different number of
neurons to approximate different eijx for j with |j| ≤ n since we used the
Riemann sums. If we add a minimal constraint on an activation function
σ of periodic neural networks, we have the exact periodic neural network
approximation for trigonometric polynomials.

The following lemma explains that the quadrature formula of a trigono-
metric function is exact. This gives us a simple periodic neural network
approximation for continuous 2π-periodic functions.

Lemma 2.4. For any P ∈ Tn, we have

(2.6)
1

2π

∫ π

−π

P (x)dx =
1

n + 1

n∑

l=0

P (
2πl

n + 1
).

Proof. It is enough to show that (2.6) is true for P (x) = eirx, where
r = 0, 1, . . . , n. When r = 0, then P (x) = e0 = 1 and so

1

2π

∫ π

−π

P (x)dx = 1 =
1

n + 1

n∑

l=0

P (
2πl

n + 1
).

For any r with 1 ≤ r ≤ n, we have

1

2π

∫ π

−π

P (x)dx =
1

2π

∫ π

−π

eirxdx =
1

2πir
(eirπ − e−irπ) = 0

and

1

n + 1

n∑

l=0

P (
2πl

n + 1
) =

1

n + 1

n∑

l=0

eir( 2πl
n+1

)

=
e2πir − 1

(n + 1)(e
2πir
n+1 − 1)

= 0.

Thus we complete the proof.
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From Lemma 2.4, we obtain the following.

Theorem 2.5. Let σ be a continuous 2π-periodic polynomial of de-
gree m with Γ := 1

2π

∫ π

−π
σ(t)e−itdt 6= 0. For a given ε > 0 and any

continuous 2π-periodic function f , there exists a neural network

(2.7) Nn,m(σ, x) :=
∑

|j|≤n

m+1∑

k=0

cj(f)
1

(m + 2)Γ
ei 2πk

m+1 σ(jx− 2πk

m + 1
)

such that

‖f −Nn,m‖∞ < ε,

where cj(f)’s are coefficients of Fejer sum of f .

Proof. Let ε > 0 be given. From (2.2), we have

(2.8) eijx =
1

2πΓ

∫ π

−π

σ(jx− t)eitdt

for x ∈ [π, π] and j with |j| ≤ n. Note that σ(jx − t)eit ∈ Tm+1 as a
function of t. By Lemma 2.4, we get

(2.9)
1

2πΓ

∫ π

−π

σ(jx− t)eitdt =
1

(m + 2)Γ

m+1∑

k=0

ei 2πk
m+1 σ(jx− 2πk

m + 1
).

By Lemma 2.1, (2.8) and (2.9), we have

‖f −Gn(f)‖∞

= ‖f −
∑

|j|≤n

m+1∑

k=0

cj(f)
1

(m + 2)Γ
ei 2πk

m+1 σ(jx− 2πk

m + 1
)‖∞

< ε.

for sufficiently large n ∈ N. Thus we complete the proof.
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3. Discussions

In our proofs, we showed a possibility of periodic function approx-
imation by neural networks. Unlike other results by neural network
approximation, we suggested that the weights in periodic neural net-
works could be restricted to integers. On the other hand, one of the
main topics in neural network approximation is the complexity problem.
The complexity problem is almost the same as the problem of degree of
approximation.

In this paper, we used the Fejer sums. They approximate the con-
tinuous 2π-periodic function uniformly on [−π, π] but they do not give
us any information of approximation order. In order to investigate the
approximation order by periodic neural network approximation, we may
use different trigonometric polynomials which satisfies the following.

Let P ∈ Tn be an even and non-negative trigonometric polynomial
which satisfies
(1)

∫ π

−π
P (x)dx = 1

(2)
∫ π

0
xkP (x) ≤ cn−k, k = 0, 1, 2,

where c is a constant. According to [2, 4, 9], if we use the integral

(3.1) Ln(f) :=

∫ π

−π

f(t)P (x− t)dt,

then we have

(3.2) ‖f − Ln(f)‖∞ ≤ Cω2(f,
1

n
),

where ω2 denotes the second modulus of smoothness of f .
In order to obtain an approximation order by periodic neural net-

works, we need to show that Ln(f) in (3.1) can be approximated uni-
formly by periodic neural networks or it is approximated by periodic
neural networks with some approximation order. We will study this in
the future.
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