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HOMOTOPY TYPE OF A 2-CATEGORY

Yongjin Song

Abstract. The classical group completion theorem states that un-
der a certain condition the homology of ΩBM is computed by in-
verting π0M in the homology of M . McDuff and Segal extended
this theorem in terms of homology fibration. Recently, more general
group completion theorem for simplicial spaces was developed. In
this paper, we construct a symmetric monoidal 2-category A. The
1-morphisms of A are generated by three atomic 2-dimensional CW-
complexes and the set of 2-morphisms is given by the group of path
components of the space of homotopy equivalences of 1-morphisms.
The main part of the paper is to compute the homotopy type of the
group completion of the classifying space of A, which is shown to be
homotopy equivalent to Z×BAut+∞.

1. Introduction

A 2-category is a special case of double category in which all ver-
tical arrows are identity morphisms. A 2-category consists of objects
(0-morphisms), horizontal arrows (1-morphisms) and collapsed squares
(2-morphisms) which are morphisms between two 1-morphisms. A ∆-
category means a category enriched over simplicial sets. For a 2-category
C, let BC be the ∆-category obtained from C by taking the nerve of the
categories of morphisms C(m,n). The classifying space BC of C is defined
to be BBC.

In chapter 3, we construct a new 2-category A which is a symmetric
monoidal 2-category and whose classifying space has a homotopy type of
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an infinite loop space. The 1-morphisms of category A are generated by
three atomic 2-dimensional CW-complexes and the set of 2-morphisms
is given by the group of path components of the space of homotopy
equivalences of 1-morphisms, i.e., π0H(C, C ′; ∂).

The main part of this article is to investigate the homotopy type
of ΩBA. In this work the generalized group completion theorem for
simplicial sets(cf. [8],[9],[10]) plays a key role. The classical group com-
pletion theorem states that under a certain condition the homology of
ΩBM is computed by inverting π0M in the homology of M(Theorem
2.1). McDuff and Segal extended this theorem in terms of homology
fibration(Theorem 2.2). The main result of this article is the following:

Theorem 3.4. ΩBA ' Z×BAut+
∞, where Aut∞ = lim

−→
Aut(Fn).

In the proof of this result the automorphism group of free group with
boundary also plays a key role. Let Gn,k be the graph of a wedge of n+k
circles. Let An,k be the group of components of homotopy equivalences
of Gn,k fixing k circles pointwise. An,k is the automorphism group of free
group on n generators with boundary. Recently, Galatius ([1]) proved
that

Z×BAut+
∞ ' Ω∞S∞

where Ω∞S∞ := limn→∞ ΩnSn.

2. The group completion theorem

The group completion theorem for a topological monoid M was origi-
nally stated ([3],[4],[5],[6],[7]) in terms of the relation between homology
of M and that of ΩBM ; under a certain condition, the homology of the
group completion ΩBM of M can be computed by inverting π0M in the
homology of M .

Let π = π0M . Regard π as a multiplicative subset of the Pontrjagin
ring H∗(M). The map M → ΩBM induces a homomorphism of Pontr-
jagin rings, because π0ΩBM is a group. The image of π in H∗(ΩBM)
consists of units.

Theorem 2.1. ([7], Prop. 1)
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If π is in the center of H∗(M), then

H∗(M)[π−1]
∼=→ H∗(ΩBM).

McDuff and May extended this theorem in terms of homology fibra-
tion. A map p : E → B is called a homology fibration if for each b ∈ B,
the natural map p−1(b) → F (p, b) is a homology equivalence, where
F (p, b) denotes the homotopy fiber at b.

Suppose that a topological monoid M acts on a space X. Let EMX
denote the Borel construction EM×M X which is actually the classifying
space of the topological category whose space of objects is X and whose
space of morphisms is M ×X.

Theorem 2.2. ([7], Prop. 2)
Let M be a topological monoid acting on a space X by homology

equivalences. Then the canonical map p : EMX → X is a homology
fibration with fiber X.

Let M be a homotopy commutative topological monoid with π0M ∼=
N. Choose a point m in the 0-component of M , then let M∞ be the
telescope M∞ = (M

m→ M
m→ M → · · · ) which has the action of M by

left multiplication.

Corollary 2.3. There is a homology equivalence M∞ → ΩBM .

We now are going to introduce more general version of the group
completion theorem for simplicial sets (cf.[10]). From now on in this
chapter a space means a simplicial set. Let ∆n be the standard n-
simplex.

Definition 2.4. Let p : E → B and σ be an n-simplex in B. Let
Ep(σ) be the pullback:

Ep(σ)

²²

// E

p

²²
∆n σ // B

Then Ep : ∆↓B → Top is a functor from the simplex category ∆↓B to
the category of spaces.

A map p : E → B is a homology fibration if the natural map Ep(σ) →
Fb(σ) to the homotopy fiber of p over σ is a homology equivalence.
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LetM be a simplicial category with constant objects. For two objects
i, j of M, M(i, j) is regarded as a space (= simplicial set) rather than
a set. A morphism from i to j is regarded as an n-simplex. Taking now
the nerve of this simplicial category degree by degree yields a simplicial
space BM∗, the simplical classifying space.

Definition 2.5. An M-diagram is a functor X : Mop → Top such
that for each pair of objects i, j, there is a natural map (action)

µij : M(i, j)×X(j) → X(i)

which satisfies the usual associativity and identity conditions.

A typical example of an M-diagram is M itself :

M(i) =
⋃

j∈Obj(M)

M(i, j)

µij : M(i, j)×M(j) →M(i) is defined by composition.
Fix k ∈ Obj(M) and define a subdiagram Mk

Mk(i) := M(i, k)

and the action µij is also defined by composition.

Definition 2.6. The bisimplicial Borel construction of anM-diagram
X : Mop → Top is the simplicial space EMX∗ whose space of n-simplices
is the disjoint union over all n-tuples of objects in M∐

i0,··· ,in
M(in, in−1)× · · · ×M(i1, i0)×X(i0).

The degeneracy maps are inclusions. The face map dn : EMXn →
EMXn−1 is the projection on the last n factors. d0 = 1 × µi1,i0 , and
the other dk’s are defined by composition M(ik+1, ik) ×M(ik, ik−1) →
M(ik+1, ik−1).

Let T be the trivial diagram, i.e., T (i) = {i} and any morphism i → j
in M induces a unique map {j} → {i}. Then we have

EMT∗ = BM∗.

For a diagram X : Mop → Top, there is a collapse natural transfor-
mation π : X → T , hence we have a map of simplicial spaces

EMπ∗ : EMX∗ → BM∗.

Note that the preimage of {i} in bisimplicial Borel construction is F (i).
Here is the generalized group completion theorem ([10]).
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Theorem 2.7. Let M be a simplicial category and X : Mop → Top
be an M-diagram. Assume that any morphism f : i → j induces an
isomorphism H∗(X(j);Z) → H∗(X(i);Z). Then for each object i in
M, the map X(i) → Fibi(πM) to the homotopy fiber of πM over i is a
homology equivalence.

In this theorem the map πM : EMX → BM is induced by π : X → T .
Recall the subdiagram Mk for k ∈ Obj(M):

Mk(i) := M(i, k).

Lemma 2.8. EMMk is contractible.

Proof. This is obviously true if M is a monoid, i.e., has only one
object, because we have Mk = M and EMM' ∗.

Suppose first thatM is a constant simplicial category, i.e. an ordinary
category. Then M(i, j) is just a hom set. Let k/M be the category
whose objects are (i, v), where i ∈ Obj(M) and v ∈ M(i, k) and a
morphism (i, v) → (i′, v′) is a morphism ω : i → i′ such that v′0ω = v.
Then k/M has a final object (k, 1k), hence B(k/M) ' ∗. Note that

EMMk = B(k/M).

The simplicial case follows by the fact that for a map f : Xn → X ′
n is a

weak equivalence for each n, then so is f .

3. A monoidal 2-category

Definition 3.1. A 2-category consists of objects (0-morphisms or 0-
cells), horizontal arrows between objects (1-morphisms or 1-cells) and
morphisms between morphisms (2-morphisms or 2-cells). Each hom set
in a 2-category carries a structure of a category. It is a category enriched
over Cat (the category of categories).

For a 2-category C, let A,B be objects on C. Then C(A,B) form a
category. Between two objects f : A → B, g : A → B in this category,
we have a morphism (2-morphism) α : f ⇒ g. There is a functor
◦h : C(B,C)×C(A, B) → C(A,C), called horizontal composition. There
is also vertical composition, denoted by ◦v.

For composable 2-morphisms α, β, γ, δ, we have an interchange law:

(α ◦h β) ◦v (γ ◦h δ) = (α ◦v γ) ◦h (β ◦v δ).
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◦v = = ◦h

Figure 1.

We define a 2-category A modifying Tillmann’s surface category. The
category A is a categorical extension of the concept of the automorphism
groups of free groups. It has both monoidal and symmetric structure,
hence it gives rise to an infinite loop space through nerve constructions.

The construction of A.

The objects of A are nonnegative integers. An object n ∈ N may be
regarded as a disjoint union of n circles.

A morphism from m to n is a 2-dimensional CW-complex (with a
coloring on the boundary) generated by gluing the following three types
of atomic 2-dimensional CW-complexes:

D P F

0 → 1 2 → 1 1 → 1

Figure 2.

The disk D is thought as a 1-morphism from 0 to 1. The pair of
pants is thought as a morphism from 2 to 1. an 1-morphism F : 1 → 1
is obtained by attaching a loop on a cylindrical surface. 1-morphisms are
generated by these three atomic CW-complexes by gluing along incom-
ing and outgoing circles and disjoint unions. we also give an ordering
(called coloring) on both incoming and outgoing boundaries of surfaces,
respectively. The following is an example of a 1-morphism.
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3 2

1

4

1

Figure 3. A 1-morphism from 4 to 2.

A circle may be thought as a morphism from 1 to 1 with a coloring
on both sides. Note that a 1-morphism m → n has exactly n connected
components.

Let A(m,n) be the category of morphisms in A. Let C and C ′ be
1-morphisms from m to n, i.e., objects in A(m, n), then the set of 2-
morphisms from C to C ′ is given by π0H(C, C ′; ∂), where H(C, C ′; ∂)
means the space of homotopy equivalences from C to C ′ which fix the
boundary pointwise. That is, there is a 2-morphism from C to C ′ only
when C and C ′ have the same homotopy type. π0H(C, C ′; ∂) is the group
of path components of the space H(C, C ′; ∂). It is known that two ho-
motopy equivalences f, g ∈ H(C,C ′; ∂) are in the same path component
if and only if they are homotopic relative to the boundary.

Definition 3.2. Let Gn,k be the graph which is a wedge of n + k
circles. Let An,k be the group of components of homotopy equivalences
of Gn,k fixing k circles pointwise.

A 1-morphism C from k to 1 in A is a connected 2-dimensional CW-
complex which is homotopy equivalent to Gn,k for some n. Therefore, the
group of components of homotopy equivalences of C fixing the boundary,
denoted by π0H(C; ∂) is isomorphic to An,k.
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Note that the disjoint union C1

∐
C2 induces a monoidal structure

on A. Moreover, the symmetries are given by the block transposition
m + n → n + m in A(m + n, n + m).

For a 2-category C, we may apply the nerve construction to the mor-
phism categories. Since the nerve construction commutes with products,
this gives a category BC enriched over simplicial sets, the category of sim-
plicial sets. In other words, BC is a simplicial category with constant
objects. Applying the nerve construction yields a bisimplicial set. The
realization of this bisimplicial set is the classifying space BC of C that
is,

BBC = BC.
Lemma 3.3. A is a monoidal symmetric 2-category. Therefore, BA

has the homotopy type of an infinite loop space.

We are now going to determine the homotopy type of (the group
completion of) the classifying space BA.

Theorem 3.4. ΩBA ' Z×BAut+
∞, where Aut∞ = lim

−→
Aut(Fn).

Proof. Let BA = M. Then M1 is an M-diagram with M1(k) :=
M(k, 1) and M∞ is also an M-diagram defined by gluing F ∈ A(1, 1)
on the right:

M∞(k) := hocolimFM(k, 1).

That is, M∞(k) is the telescope (M(k, 1)
F→ M(k, 1)

F→ · · · ). Since

M(k, 1) is homotopy equivalent to
⋃
n≥0

BAn,k, there is a homotopy equiv-

alence

M∞(k) ' Z×BA∞,k.

The vertices of BM act on M∞ by homology isomorphisms ([2]).
Hence we can apply the generalized group completion theorem to the
diagram

M∞(k)

²²

// EMM∞

²²
k // BM
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Note that EMM∞ is contractible, because for each k, EMMk is con-
tractible (Lemma 2.8) and EMM∞ is homotopy equivalent to the tele-
scope (EMM1 → EMM1 → · · · ). Hence we have a homology equiva-
lence

ΩBA →M∞(0) ' Z×BAut∞.

By the Whitehead theorem for simple spaces, this gives a homotopy
equivalence after plus construction, that is, we have

ΩBA ' Z×BAut+
∞.
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