The Spatial and Temporal Variation of Periphyton in the Inbuk Stream

인북천에서 부착조류 현존량의 시·공간적 변동

  • Lee, Jaeyong (Department of Environmental Science, Kangwon National University) ;
  • Islam, Jahidul Mohammad (Department of Environmental Science, Kangwon National University) ;
  • Shin, Myoungsun (Department of Environmental Science, Kangwon National University) ;
  • Jung, Sungmin (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University)
  • 이재용 (강원대학교 자연과학대학 환경학과) ;
  • 자히둘 이슬람 (강원대학교 자연과학대학 환경학과) ;
  • 신명선 (강원대학교 자연과학대학 환경학과) ;
  • 정성민 (강원대학교 자연과학대학 환경학과) ;
  • 김범철 (강원대학교 자연과학대학 환경학과)
  • Received : 2009.09.24
  • Accepted : 2009.12.23
  • Published : 2010.01.30

Abstract

Eutrophication is a well-known phenomenon in lentic habitats, however it is receiving increasing attention in shallow streams of Korea due to the increase of periphyton to a nuisance level. In this study temporal and spatial variation in periphyton standing crop and nutrient concentrations were surveyed in the upper reach of the Han River (the Inbuk Stream) that used to be a pristine rural stream until 1980s. Chlorophyll-a concentration per unit surface area of bottom substrate was examined monthly for one year period at nine sites along the Inbuk Stream together with environmental factors such as phosphorus, nitrogen, and water velocity. The standing crop of periphytic algae ranged from $4{\sim}242mgChl.a/m^2$ with a median of $55mgChl.a/m^2$, often exceeding the nuisance level criterion. Along the stream periphyton increased significantly from $39{\pm}48mgChl.a/m^2$ to $94{\pm}49mgChl.a/m^2$ after merging of a tributary in an intensive agricultural basin with high phosphorus concentrations. Seasonally periphyton biomass was highest in autumn (median $171{\pm}76mgChl.a/m^2$) from October through December when water flow velocity was low (median $0.4{\pm}0.3m/s$), while it was higher in flood season (median $1.2{\pm}0.4m/s$) and freezing season (median $0.2{\pm}0.3m/s$) was lower. The result shows that this rural stream often shows characteristics of eutrophication according to periphyton standing crop and it may be regulated by phosphorus and water velocity.

Keywords

References

  1. 곽인실, 송미영, 전태수(2004). 저서성 대형무척추동물의 자연적 교란에 대한 영향. 한국육수학회지, 37(1), pp. 87-95.
  2. 김범철, 사승환, 김문숙, 이윤경, 김재구(2007). 국내 호수의 제한영양소와 하수처리장 방류수 인 기준 강화의 필요성. 수질보전 한국물환경학회지, 23(4), pp. 512-517.
  3. 김용재(2004). 한탄강의 돌 부착조류 군집의 시, 공간 동태. Algae, 19(1), pp. 15-22. https://doi.org/10.4490/ALGAE.2004.19.1.015
  4. 김지환, 이석준, 오희목(2000). 금강 부착조류 군집의 동태. Algae, 15(4), pp. 287-297.
  5. 김현주, 윤해순, 김진수, 김현우, 주기재(1997). 산지하천에서 빛과 초식에 의한 부착조류의 생체량 변화. 한국육수학회지, 30(4), pp. 385-392.
  6. 박구성, 황순진, 김호섭, 공동수, 신재기(2006). 하수처리를 이용한 인공수로에서 사상성 부착조류의 성장에 영향을 미치는 요인들. 한국육수학회지, 39(1), pp. 100-109.
  7. 신명선, 김범철, 김재구, 박미숙, 정성민, 장창원, 신윤근, 배연재(2008). 청계천의 수질과 부착조류의 계절적 변동. 한국하천호수학회지, 41(1), pp. 1-10.
  8. 조경제(1994). 인공기질을 이용한 부착조류조사. 한국육수학회지, 27(1), pp. 47-57.
  9. 최재신, 김한순, 강만도(1998). 신천의 부착 규조군집의 계절적 동태. 한국육수학회지, 31(3), pp. 235-240.
  10. 최철만, 박연규, 문성기(2004). 인공기질 부착조류에 의한 대천의 수질평가. 한국육수학회지, 22(1), pp. 242-245.
  11. 하경, 박성배, 김현우, 김진수, 주기재(1997). 부산.경상남도의 상류하천의 물리.화학적 특성과 부착조류 생체량의 분포. 한국육수학회지, 30(4), pp. 393-403.
  12. 황순진, 천세억, 이재안, 이홍수, 이혜근, 신재기(2006). 하천 생태계에서 부착조류 군집의 시공간적 분포 비교. 공동추계학술발표회논문집, 대한상수도학회.한국물환경학회, pp. 470-474.
  13. Abe, S. I., Nagumo, T., and Tanaka, J. (2000). Effects of current on the development of loosely and tightly attached layers in periphyton communities. Phycological Research, 48, pp. 261-265. https://doi.org/10.1111/j.1440-1835.2000.tb00222.x
  14. An, K. G. and Kim, D. S. (2003). Response of reservoir water quality to nutrient inputs from streams and in-lake fish farms. Water. Air. and Soil Pollution, 149. pp. 27-49. https://doi.org/10.1023/A:1025602213674
  15. APHA (1998). Standard Methods for the Examination of Water ond Wastewater, 20th eds. American Publie Health Association, Washington. DC., USA.
  16. Barry, J. F. B., Biggs, A., Robert, A. S., and Maurice, J. D. (1999). Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. J. N. Am. Benthol. Soc., 18, pp. 222-241. https://doi.org/10.2307/1468462
  17. Biggs, B. J. F., Goring, D. G., and Nikora, V. l. (1998). Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol., 34, pp. 598-607. https://doi.org/10.1046/j.1529-8817.1998.340598.x
  18. Burkholder, J. M. and Cuker, B. E. (1991). Response of periphyton communities to cray and phosphate loading in a shallow reservoir. J. Phycol., 27, pp. 373-384. https://doi.org/10.1111/j.0022-3646.1991.00373.x
  19. Dodds, W. K., Smith, V. K., and Zander, B. (1997). Developing nutrient targets to control benthic chlorophyll levels in streams: a case study of the Clark Fork River. Water Res., 31, pp. 1738-1750. https://doi.org/10.1016/S0043-1354(96)00389-2
  20. Figueroa-Nieves, D., Royer, T. V., and David, M. B. (2006). Controls on chlorophyll.a in nutrient-rich agricultural streams in Illinois. USA. Hydrobiologia. 568, pp. 287-298. https://doi.org/10.1007/s10750-006-0114-3
  21. Francoeur, S. N. and Biggs, B. J. F. (2006). Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiology, 561, pp. 59-69. https://doi.org/10.1007/s10750-005-1604-4
  22. Francoeur, S. N., Biggs. B. J. F., and Lowe, R. L. (1998). Microform bed clusters as refugia for periphyton in a flood-prone headwater stream. New Zealaml Journal of Marine and Freshwater Research, 32, pp. 363-374. https://doi.org/10.1080/00288330.1998.9516831
  23. Hill, B. H., Herlihy, A. T., Kaufmann, P. R., DeCelles, S. J., and Vander Borgh, M. A. (2003). Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecological Indicators, 2, pp. 325-338. https://doi.org/10.1016/S1470-160X(02)00062-6
  24. Horner, R. R., Welch, E. B., Seeley, M. R., and Jacoby, J. M. (1990). Responses of periphyton to changes in cuReent velocity, suspended sediment WId phosphorus concentration. Freshwater Biology, 24, pp. 215-232. https://doi.org/10.1111/j.1365-2427.1990.tb00704.x
  25. Katano, I., Doi, H., Houki, A., and Isobel, Y. (2007). Changes in periphyton abundance and community structure with the dispersal of a caddisfly grazer, Micrasema quadriloba, Limnology, 8, pp. 219-226. https://doi.org/10.1007/s10201-007-0211-7
  26. Kjeldsen, K., Iversen, T. M., Thorup, J., and Winding, T. (1998). Benthic algal biomass in an unshaded first-order lowland stream: distribution and regulation. Hydrobiology, 377, pp. 107-122. https://doi.org/10.1023/A:1003267214509
  27. Lee, Y. K., Shin, M. S., Jung, Y. K., Jang, C. W., and Kim, B. C. (2008). Comparison of phytoplankton chlorophyll-a extracted with different solvents. Korean Journal of Limnology, 41(4), pp. 485-489.
  28. Liboriussen, L., Jeppesen, E., Bramm. M. E., and Lassen, M. F. (2005). Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Aquatic Ecology, 39, pp. 23-39. https://doi.org/10.1007/s10452-004-3039-9
  29. Mosisch, T. D., Bunn, S. E., and Davies, P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 46, pp. 1269-1278. https://doi.org/10.1046/j.1365-2427.2001.00747.x
  30. Munn, M. D., Osborne, L. L., and Wiley, M. J. (1989). Factors influencing periphyton growth in agricultural streams of Central Illinois. Hydrobiologia, 174, pp. 89-97. https://doi.org/10.1007/BF00014057
  31. Rosemond, A. D. ( 1994). Multiple factors limit seasonal variation in periphyton in a forest stream. J. N. Am. Benthol. Soc., 13, pp. 333-344. https://doi.org/10.2307/1467363
  32. Taylor, S. L., Roberts, S. C., Walsh, C. J., and Hall, B. E. (2004). Catchment urbanizationand increased benthic algal biomass in streams: linking mechanisms to management. Freshwater Biology, 49, pp. 835-851. https://doi.org/10.1111/j.1365-2427.2004.01225.x
  33. Tett, P., Gallegos, C., Kelly, M. G., Hornberger, G. M., and Cosby, B. J. (1978). Relationships among substrate, flow, and benthic microalgal pigment density in the Mechums River, Virginia. Limnol. Oceanogr., 23(4), pp. 785-797. https://doi.org/10.4319/lo.1978.23.4.0785
  34. Traaen, T. S. and Lindstrom, E. A. (1983). Influence or current velocity on periphyton distribution, In: Periphyton or Freshwater Ecosystems, R. G. Wetzel (ed.), Developments in Hydrobiology, 17, pp. 97-99.
  35. Uehlinger, U., Kawecka, B., and Robinson, C. T. (2003). Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spol). Aquat. Sci., 65, pp. 199-209. https://doi.org/10.1007/s00027-003-0664-7
  36. Van Nieuwenhuyse, E. E. and Jones, J. R. (1996). Phosphorus-chlorophyll relationship in temperate streams and its variation with stream catchment area. Can. J. Fish. Aquatic. Sci., 53, pp. 99-105.
  37. Welch, E. B., Jacoby, J. M., Honer, R. R., and Seeley, M. R. (1988). Nuisance biomass levels of periphytic algae in streams. Hydrobiologia, 157, pp. 161-168. https://doi.org/10.1007/BF00006968