ALMOST HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

Sung Jin Lee* and Choonkil Park

Abstract

It is shown that for an almost algebra homomorphism between Banach algebras, there exists a unique algebra homomorphism near the almost algebra homomorphism.

Moreover, we prove that for an almost algebra $*$-homomorphism between C^{*}-algebras, there exists a unique algebra $*$-homomorphism near the almost algebra $*$-homomorphism, and that for an almost algebra $*$-homomorphism between $J B^{*}$-algebras, there exists a unique algebra $*$-homomorphism near the almost algebra $*$-homomorphism

1. Introduction

Let E_{1} and E_{2} be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_{1} \rightarrow E_{2}$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Rassias [5] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$. Găvruta [1] generalized the Rassias' result, and Park [4] applied the Găvruta's result to linear functional equations in Banach

Received September 24, 2009. Revised December 27, 2009. Accepted December 30, 2009.

2000 Mathematics Subject Classification: 47B48, 46K70, 39B52, 17C65, 46L05.
Key words and phrases: almost homomorphism, C^{*}-algebra, $J B^{*}$-algebra, stability, functional equation.

The first author was supported by the Daejin University Research Grant in 2010.
*Corresponding author.
modules over a C^{*}-algebra. In [2], the authors proved the stability of the functional equation $f(x+y+x y)=f(x)+f(y)+x f(y)+y f(x)$.

Throughout this paper, let \mathcal{B} and \mathcal{C} be complex Banach algebras with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

In this paper, we prove that for an almost algebra homomorphism $f: \mathcal{B} \rightarrow \mathcal{C}$, there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ near the almost algebra homomorphism. This result is applied to C^{*}-algebras and $J B^{*}$-algebras.

2. Stability of algebra homomorphisms between Banach algebras

We are going to show the generalized Hyers-Ulam stability of algebra homomorphisms between Banach algebras.

Theorem 2.1. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y, z, w)=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w\right)<\infty \tag{i}\\
&\left\|T_{\mu} f(x, y, z, w)\right\|:=\|f(\mu x+\mu y+z w)-\mu f(x)-\mu f(y)-f(z) f(w)\|
\end{align*}
$$

$$
\begin{equation*}
\leq \varphi(x, y, z, w) \tag{ii}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x, y, z, w \in \mathcal{B}$. Then there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0) \tag{iii}
\end{equation*}
$$

for all $x \in \mathcal{B}$.
Proof. Put $z=w=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (ii). Replacing y by x in (ii), we get

$$
\|f(2 x)-2 f(x)\| \leq \varphi(x, x, 0,0)
$$

for all $x \in \mathcal{B}$. So one can obtain that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{1}{2} \varphi(x, x, 0,0),
$$

and hence

$$
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{n+1}} f\left(2^{n+1} x\right)\right\| \leq \frac{1}{2^{n+1}} \varphi\left(2^{n} x, 2^{n} x, 0,0\right)
$$

for all $x \in \mathcal{B}$. So we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2^{n}} f\left(2^{n} x\right)\right\| \leq \frac{1}{2} \sum_{l=0}^{n-1} \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} x, 0,0\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathcal{B}$.
Let x be an element in \mathcal{B}. For positive integers n and m with $n>m$,

$$
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \frac{1}{2} \sum_{l=m}^{n-1} \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} x, 0,0\right)
$$

which tends to zero as $m \rightarrow \infty$ by (i). So $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{B}$. Since \mathcal{C} is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges for all $x \in \mathcal{B}$. We can define a mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
h(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right) \tag{2}
\end{equation*}
$$

for all $x \in \mathcal{B}$.
By (i) and (2), we get

$$
\left\|T_{1} h(x, y, 0,0)\right\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|T_{1} f\left(2^{n} x, 2^{n} y, 0,0\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y, 0,0\right)=0
$$

for all $x, y \in \mathcal{B}$. Hence $T_{1} h(x, y, 0,0)=0$ for all $x, y \in \mathcal{B}$. So one can obtain that h is additive. Moreover, by passing to the limit in (1) as $n \rightarrow \infty$, we get the inequality (iii).

Now let $S: \mathcal{B} \rightarrow \mathcal{C}$ be another additive mapping satisfying

$$
\|f(x)-S(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0)
$$

for all $x \in \mathcal{B}$.

$$
\begin{aligned}
\|h(x)-S(x)\| & =\frac{1}{2^{l}}\left\|h\left(2^{l} x\right)-S\left(2^{l} x\right)\right\| \\
& \leq \frac{1}{2^{l}}\left\|h\left(2^{l} x\right)-f\left(2^{l} x\right)\right\|+\frac{1}{2^{l}}\left\|f\left(2^{l} x\right)-S\left(2^{l} x\right)\right\| \\
& \leq \frac{1}{2} \frac{1}{2^{l}} \widetilde{\varphi}\left(2^{l} x, 2^{l} x, 0,0\right),
\end{aligned}
$$

which tends to zero as $l \rightarrow \infty$ by (i). Thus $h(x)=S(x)$ for all $x \in \mathcal{B}$. This proves the uniqueness of h.

By the assumption, for each $\mu \in \mathbb{T}^{1}$,

$$
\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
$$

for all $x \in \mathcal{B}$. And one can show that

$$
\left\|\mu f\left(2^{n} x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. So

$$
\begin{aligned}
\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| & \leq\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\|+\left\|2 \mu f\left(2^{n-1} x\right)-\mu f\left(2^{n} x\right)\right\| \\
& \leq 2 \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. Thus $2^{-n}\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. Hence

$$
h(\mu x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu f\left(2^{n} x\right)}{2^{n}}=\mu h(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$.
Now let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [3, Theorem 1], there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{T}^{1}$ such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. And $h(x)=h\left(3 \cdot \frac{1}{3} x\right)=$ $3 h\left(\frac{1}{3} x\right)$ for all $x \in \mathcal{B}$. So $h\left(\frac{1}{3} x\right)=\frac{1}{3} h(x)$ for all $x \in \mathcal{B}$. Thus

$$
\begin{aligned}
h(\lambda x) & =h\left(\frac{M}{3} \cdot 3 \frac{\lambda}{M} x\right)=M \cdot h\left(\frac{1}{3} \cdot 3 \frac{\lambda}{M} x\right)=\frac{M}{3} h\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} h\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(h\left(\mu_{1} x\right)+h\left(\mu_{2} x\right)+h\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) h(x)=\frac{M}{3} \cdot 3 \frac{\lambda}{M} h(x) \\
& =\lambda h(x)
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence

$$
h(\alpha x+\beta y)=h(\alpha x)+h(\beta y)=\alpha h(x)+\beta h(y)
$$

for all $\alpha, \beta \in \mathbb{C}(\alpha, \beta \neq 0)$ and all $x, y \in \mathcal{B}$. And $h(0 x)=0=0 h(x)$ for all $x \in \mathcal{B}$. So the unique additive mapping $h: \mathcal{B} \rightarrow \mathcal{C}$ is a \mathbb{C}-linear mapping.

It follows from (2) that

$$
\begin{equation*}
h(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{2 n} x\right)}{2^{2 n}} \tag{3}
\end{equation*}
$$

for all $x \in \mathcal{B}$. Let $x=y=0$ in (ii). Then we get

$$
\|f(z w)-f(z) f(w)\| \leq \varphi(0,0, z, w)
$$

for all $z, w \in \mathcal{B}$. Since

$$
\begin{align*}
& \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
& \frac{1}{2^{2 n}}\left\|f\left(2^{n} z \cdot 2^{n} w\right)-f\left(2^{n} z\right) f\left(2^{n} w\right)\right\| \leq \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
& \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \tag{4}
\end{align*}
$$

for all $z, w \in \mathcal{B}$. By (i), (3), and (4),

$$
\begin{aligned}
h(z w) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{2 n} z w\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} z \cdot 2^{n} w\right)}{2^{n} \cdot 2^{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{f\left(2^{n} z\right)}{2^{n}} \cdot \frac{f\left(2^{n} w\right)}{2^{n}}\right)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} z\right)}{2^{n}} \cdot \lim _{n \rightarrow \infty} \frac{f\left(2^{n} w\right)}{2^{n}} \\
& =h(z) h(w)
\end{aligned}
$$

for all $z, w \in \mathcal{B}$. Hence the additive mapping $h: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra homomorphism satisfying the inequality (iii), as desired.

Corollary 2.2. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(\mu x+\mu y+z w)-\mu f(x)-\mu f(y)-f(z) f(w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in \mathcal{B}$. Then there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ such that

$$
\|f(x)-h(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in \mathcal{B}$.
Proof. Define $\varphi(x, y, z, w)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 2.1.

Theorem 2.3. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty)$ satisfying (i) such that
(iv) $\|f(\mu x+\mu y+z w)-\mu f(x)-\mu f(y)-f(z) f(w)\| \leq \varphi(x, y, z, w)$ for $\mu=1, i$, and all $x, y, z, w \in \mathcal{B}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

Proof. Put $z=w=0$ and $\mu=1$ in (iv). By the same reasoning as the proof of Theorem 2.1, there exists a unique additive mapping $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii). By the same reasoning as the proof of [5, Theorem], the additive mapping $h: \mathcal{B} \rightarrow \mathcal{C}$ is \mathbb{R}-linear.

Put $z=w=0$ and $\mu=i$ in (iv). By the same method as the proof of Theorem 2.1, one can obtain that

$$
h(i x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} i x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{i f\left(2^{n} x\right)}{2^{n}}=i h(x)
$$

for all $x \in \mathcal{B}$.
For each element $\lambda \in \mathbb{C}, \lambda=\eta+i \nu$, where $\eta, \nu \in \mathbb{R}$. So

$$
\begin{aligned}
h(\lambda x) & =h(\eta x+i \nu x)=\eta h(x)+\nu h(i x)=\eta h(x)+i \nu h(x) \\
& =\lambda h(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{B}$. So

$$
h(\alpha x+\beta y)=h(\alpha x)+h(\beta y)=\alpha h(x)+\beta h(y)
$$

for all $\alpha, \beta \in \mathbb{C}$, and all $x, y \in \mathcal{B}$. Hence the additive mapping $h: \mathcal{B} \rightarrow \mathcal{C}$ is \mathbb{C}-linear.

The rest of the proof is the same as in the proof of Theorem 2.1.

3. Stability of algebra $*$-homomorphisms between C^{*}-algebras

In this section, let \mathcal{B} be a unital C^{*}-algebra with unitary group $\mathcal{U}(\mathcal{B})$, and \mathcal{C} a C^{*}-algebra.

We are going to show the generalized Hyers-Ulam-Rassias stability of algebra $*$-homomorphisms between C^{*}-algebras.

Theorem 3.1. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty)$ satisfying (i) and (ii) such that

$$
\begin{equation*}
\left\|f\left(2^{n} u^{*}\right)-f\left(2^{n} u\right)^{*}\right\| \leq \varphi\left(2^{n} u, 2^{n} u, 0,0\right) \tag{v}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{B})$ and $n=0,1, \cdots$. Then there exists a unique algebra *-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

It follows from (i) and (v) that

$$
\begin{aligned}
h\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(\left(2^{n} u\right)^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)^{*}}{2^{n}}=\left(\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)}{2^{n}}\right)^{*} \\
& =h(u)^{*}
\end{aligned}
$$

for all $u \in \mathcal{U}(\mathcal{B})$.
Now let $x \in \mathcal{B}(x \neq 0)$ and M an integer greater than $4\|x\|$. Then $\left\|\frac{x}{M}\right\|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [3, Theorem 1], there exist three elements $u_{1}, u_{2}, u_{3} \in \mathcal{U}(\mathcal{B})$ such that $3 \frac{x}{M}=u_{1}+u_{2}+u_{3}$. So

$$
\begin{aligned}
h\left(x^{*}\right) & =h\left(\frac{M}{3}\left(u_{1}^{*}+u_{2}^{*}+u_{3}^{*}\right)\right)=\frac{M}{3} h\left(u_{1}^{*}+u_{2}^{*}+u_{3}^{*}\right) \\
& =\frac{M}{3}\left(h\left(u_{1}^{*}\right)+h\left(u_{2}^{*}\right)+h\left(u_{3}^{*}\right)\right) \\
& =\frac{M}{3}\left(h\left(u_{1}\right)^{*}+h\left(u_{2}\right)^{*}+h\left(u_{3}\right)^{*}\right) \\
& =\frac{M}{3}\left(h\left(u_{1}\right)+h\left(u_{2}\right)+h\left(u_{3}\right)\right)^{*} \\
& =\frac{M}{3}\left(h\left(u_{1}+u_{2}+u_{3}\right)\right)^{*}=h\left(\frac{M}{3}\left(u_{1}+u_{2}+u_{3}\right)\right)^{*} \\
& =h(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence the algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ is involutive, as desired.

Corollary 3.2. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
&\|f(\mu x+\mu y+z w)-\mu f(x)-\mu f(y)-f(z) f(w)\| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \\
&\left\|f\left(2^{n} u^{*}\right)-f\left(2^{n} u\right)^{*}\right\| \leq 2 \cdot 2^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in \mathcal{U}(\mathcal{B}), n=0,1, \cdots$, and all $x, y, z, w \in \mathcal{B}$. Then there exists a unique algebra $*$-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ such that

$$
\|f(x)-h(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in \mathcal{B}$.
Proof. Define $\varphi(x, y, z, w)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 3.1.

Theorem 3.3. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty$) satisfying (i), (iv), and (v). If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then there exists a unique algebra $*$-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

Proof. By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

By the same method as in the proof of Theorem 3.1, one can show that the algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ is involutive, as desired.

4. Stability of algebra *-homomorphisms between $J B^{*}$-algebras

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [6]). Let \mathcal{H} be a complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let $\mathcal{L}(\mathcal{H})$ be the real vector space of all bounded self-adjoint linear operators on \mathcal{H}, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $\mathcal{L}(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y:=\frac{x y+y x}{2}$. A commutative algebra X with product $x \circ y$ (not necessarily given by an anticommutator) is called a Jordan algebra if $x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right)$ holds.

A complex Jordan algebra \mathcal{B} with product $x \circ y$, unit element e and involution $x \mapsto x^{*}$ is called a $J B^{*}$-algebra if \mathcal{B} carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq\|x\| \cdot\|y\|$ and $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$. Here $\left\{x y^{*} z\right\}:=x \circ\left(y^{*} \circ z\right)-y^{*} \circ(z \circ x)+z \circ\left(x \circ y^{*}\right)$ denotes the Jordan triple product of $x, y, z \in \mathcal{B}$. Throughout this section, let \mathcal{B} and \mathcal{C} be $J B^{*}$-algebras.

We are going to show the generalized Hyers-Ulam stability of algebra *-homomorphisms between $J B^{*}$-algebras.

Theorem 4.1. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty)$ satisfying (i) such that

$$
\begin{align*}
\|f(\mu x+\mu y+z \circ w)-\mu f(x)-\mu f(y)-f(z) \circ f(w)\| & \leq \varphi(x, y, z, w), \\
(\mathrm{vi}) & \left\|f\left(x^{*}\right)-f(x)^{*}\right\| \tag{vi}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in \mathcal{B}$. Then there exists a unique algebra *-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ such that satisfying the inequality (iii).

Proof. By the same method as in the proof of Theorem 2.1, one can show that there exists a unique algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

It follows from (i) and (vi) that

$$
\begin{aligned}
h\left(x^{*}\right) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(\left(2^{n} x\right)^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)^{*}}{2^{n}}=\left(\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}\right)^{*} \\
& =h(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence the algebra homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ is involutive, as desired.

Corollary 4.2. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| f(\mu x+\mu y+z \circ w)-\mu f(x)-\mu f(y) & -f(z) \circ f(w) \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right), \\
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| & \leq 2 \theta\|x\|^{p}
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in \mathcal{B}$. Then there exists a unique algebra *-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ such that

$$
\|f(x)-h(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in \mathcal{B}$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 4.1.

Theorem 4.3. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{B}^{4} \rightarrow[0, \infty)$ satisfying (i) and (vi) such that

$$
\|f(\mu x+\mu y+z \circ w)-\mu f(x)-\mu f(y)-f(z) \circ f(w)\| \leq \varphi(x, y, z, w)
$$

for $\mu=1, i$, and all $x, y, z, w \in \mathcal{B}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then there exists a unique algebra $*$-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii).

Proof. By the same reasoning as in the proofs of Theorems 2.1 and 4.1, there exists a unique algebra $*$-homomorphism $h: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iii), as desired.

References

[1] P. Găvruta, A generalization of the hyers-ulam-rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[2] Y. Jung and K. Park, On the stability of the functional equation $f(x+y+x y)=$ $f(x)+f(y)+x f(y)+y f(x)$, J. Math. Anal. Appl. 274 (2002), 659-666.
[3] R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[4] C. Park, On the stability of the linear mapping in banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[5] Th.M. Rassias, On the stability of the linear mapping in banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[6] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, Regional Conference Series in Mathematics No. 67, Amer. Math. Soc., Providence, 1987.

Department of Mathematics
Daejin University
Kyeonggi 487-711, Republic of Korea
E-mail: hyper@daejin.ac.kr
Department of Mathematics Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

