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SOME GEOMETRIC RESULTS ON A PARTICULAR

SOLUTION OF EINSTEIN’S EQUATION

Jong Woo Lee

Abstract. In the unified field theory(UFT), many works on the
solutions of Einstein’s equation have been published. The main goal
in the present paper is to obtain some geometric results on a partic-
ular solution of Einstein’s equation under some condition in even-
dimensional UFT Xn.

1. Introduction

Einstein ([1], 1950) proposed a new unified field theory that would
include both gravitation and electromagnetism. Characterizing Ein-
stein’s unified field theory as a set of geometrical postulates in a 4-
dimensional generalized Riemannian space X4 (i.e., space-time), Hlavatý
([9], 1957) gave the mathematical foundation of the 4-dimensional uni-
fied field theory(UFT X4) for the first time. Generalizing X4 to the
n-dimensional generalized Riemannian manifold Xn, n-dimensional gen-
eralization of this theory, the so-called Einstein’s n-dimensional unified
field theory(UFT Xn), had been obtained by Mishra ([8], 1958). Since
then many consequences of this theory has been obtained by a number
of mathematicians. The main goal in the present paper is to obtain some
geometric results on a particular solution of Einstein’s equation under
some condition in even-dimensional UFT Xn. The obtained results and
discussions in the present paper will be useful for the even-dimensional
considerations of the unified field theory.
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2. Preliminary

This section is a brief collection of basic concepts, notations, and
results, which are needed in our further considerations in the present
paper.

Let Xn be an n-dimensional generalized Riemannian manifold covered
by a system of real coordinate neighborhoods {U; xν}, where, here and in
the sequel, Greek indices run over the range {1, 2, · · · , n} and follow the
summation convention. In the Einstein’s usual n-dimensional unified
field theory(UFT Xn), the algebraic structure on Xn is imposed by a
basic real non-symmetric tensor gλµ, the so-called unified field tensor,
which may be split into its symmetric part hλµ and skew-symmetric
part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that

(2.2) G = det(gλµ) 6= 0, H = det(hλµ) 6= 0.

Since det(hλµ) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµh
λν = δν

µ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined in UFT Xn in the usual manner. Then
we may define new tensors by

(2.4) kα
µ = kλµh

λα, kλ
α = kλµh

µα.

In UFT Xn, the differential geometric structure is imposed by the tensor
gλµ by means of a connection Γν

λµ defined by the Einstein’s equation:

(2.5a) ∂ωgλµ − gαµΓα
λω − gλαΓα

ωµ = 0 (∂ν =
∂

∂xν
),

or equivalently

(2.5b) Dωgλµ = 2Sωµ
αgλα,

where Dω denotes the symbolic vector of the covariant derivative with
respect to Γν

λµ, and Sλµ
ν is the torsion tensor of Γν

λµ.
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In UFT Xn, the following quantities are frequently used, where p =
1, 2, 3, ... :

(a) g =
G

H
, k =

T

H
,

(b) K0 = 1, Kp = k[α1

α1 kα2

α2 ... kαp]
αp ,

(c) (0)kλ
ν = δν

λ,
(p)kλ

ν = kλ
α (p−1)kα

ν
= (p−1)kλ

α
kα

ν ,

(d) φ = (2)kα
α.

(2.6)

It should be remarked that the tensor (p)kλν is symmetric if p is even,
and skew-symmetric if p is odd.

Remark 2.1. From now on, we shall assume that

(2.7) T = det(kλµ) 6= 0.

Hence there exists a unique skew-symmetric tensor k
λµ

in Xn satisfying

(2.8) kλµ k
λν

= δν
µ.

Since kλµ is skew-symmetric, and T 6= 0, the dimension of Xn is even.
That is, n is even. Hence all our further considerations in the present
paper are dealt in even-dimensional UFT Xn.

Our investigation is based on the skew-symmetric tensor

(2.9) Pλµ = (1− φ)kλµ + (3)kλµ,

where φ is given by (2.6)(d). And the following quantities are used in
our further considerations. For s = 2, 4, ..., n + 2,

(2.10) Ω0 = 0, Ωs = (φ− 1)Ωs−2 + Ks−2.

A direct calculation shows that

Ωn+2 = (φ− 1)
n
2 K0 + (φ− 1)

n−2
2 K2 + (φ− 1)

n−4
2 K4 +

... + (φ− 1)Kn−2 + Kn

=
n∑

p=0

{
√

φ− 1}n−pKp

(2.11)

The following theorems were proved by Lee[3, 2009]:

Theorem 2.2. The determinant of the tensor Pλµ, given by (2.9),
never vanishes, i.e.,

(2.12) det(Pλµ) 6= 0,
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if and only if

(2.13) Ωn+2 6= 0.

Remark 2.3. In our further considerations in the present paper, we
assume that Ωn+2 6= 0, that is, det(Pλµ) 6= 0. Therefore there exists a
unique skew-symmetric tensor Qλν satisfying

(2.14) Pλµ Qλν = δν
µ.

Theorem 2.4. The representation of the tensor Qλµ, given by (2.14),
may be given by

(2.15) Qλµ =
1

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−3)kλµ,

Here and in what follows, the index s is assumed to take the values 0,
2, 4, ... , n in the specified range, and

(2.16) (−1)kλµ = −k
λµ

= −1

k

n−2∑
s=0

Ks
(n−s−1)kλµ.

Theorem 2.5. A necessary and sufficient condition for the Einstein’s
equation (2.5) to admit exactly one particular solution Γν

λµ of the form

(2.17) Sλµ
ν = kλµY

ν ,

for some nonzero vector Y ν , is that the basic tensor gλµ satisfies the
following condition:

(2.18) ∇ν kλµ = −2(kν[λ hµ]α − (2)kν[λ kµ]α)Qγα∇β kγ
β,

where Qλµ is given by (2.15), and ∇ω is the symbolic vector of the
covariant derivative with respect to the Christoffel symbols {λ

ν
µ} defined

by hλµ. If this condition is satisfied, then the vector Y ν which defines
the particular solution is given by

(2.19) Y α = Qλα∇βkλ
β,

and hence the complete representation of the particular solution in terms
of the basic tensor gλµ may be given by
(2.20)

Γν
λµ = {λ

ν
µ} − 1

Ωn+2

n−2∑
s=0

Ωs+2(2k(λ
νkµ)α − kλµδ

ν
α) (n−s−3)kγα∇βkγ

β.
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3. Some geometric results

Remark 3.1. Our further considerations in the present paper, we
assume that the condition (2.18) is always satisfied by the basic unified
field tensor gλµ.

Theorem 3.2. When a connection Γν
λµ of the form (2.17) is a solution

of the Einstein’s equation (2.5), its torsion vector Sλ = Sλα
α is given by

(3.1) Sλ = − 1

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−2)kλ

γ ∇βkγ
β,

Proof. From (2.20), we obtain

(3.2) Sλµ
ν =

1

Ωn+2

n−2∑
s=0

Ωs+2 kλµ
(n−s−3)kγν ∇βkγ

β,

Contracting for µ and ν in (3.2), and making use of (2.6)(c), we obtain
(3.1)

Theorem 3.3. The Nijenhuis tensor Nλµ
ν ,

(3.3) Nλµ
ν = 2(∂α k[λ

ν) kµ]
α − 2kα

ν (∂[µ kλ]
α),

is given by

(3.4) Nλµ
ν = −2(kλµ − (3)kλµ)

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−2)kνγ ∇βkγ

β,

Proof. The symbol ∂ in (3.3) may be replaced by ∇, that is,

(3.5) Nλµ
ν = 2(∇α k[λ

ν) kµ]
α − 2kα

ν (∇[µ kλ]
α).

In this case, substituting the condition (2.18) into (3.5), the Nijenhuis
tensor Nλµ

ν may be given by

(3.6) Nλµ
ν = 2(kλµ − (3)kλµ)kν

α Qγα∇β kγ
β,

by a straightforward computation. Substituting (2.15) into (3.6), we
obtain (3.4).

Theorem 3.4. The covariant derivatives of the determinants G and
H, given by (2.2), with respect to (2.20) may be given by

(3.7) DωG = − 2G

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−2)kω

γ ∇βkγ
β,
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(3.8) DωH = − 2H

Ωn+2

n−2∑
s=0

Ωs+2 ((n−s−2)kω
γ + (n−s−1)kω

γ)∇βkγ
β.

Proof. According to (2.2), there is a unique tensor

(3.9) ∗gλν =
∂ ln G

∂gλν

,

satisfying the condition

(3.10) gλµ
∗gλν = gµλ

∗gνλ = δν
µ.

Multiplying ∗gλν to both sides of (2.5)(b), and making use of (3.10), we
obtain

(3.11) ∗gλνDωgλµ = 2Sωµ
ν ,

Contracting for µ and ν in (3.11), and making use of (3.9), we obtain

∗gλνDωgλν = G−1DωG = 2 Sω,

which implies that

(3.12) DωG = 2GSω.

Substituting (3.1) into (3.12), we obtain (3.7). Next, making use of (2.1)
and (2.5)(b), we obtain

(3.13) Dωhλµ = Dωg(λµ) = 2Sω(µ
α gλ)α.

Multiplying hλµ to both sides of (3.13), and making use of (2.4), we
obtain

hλµDωhλµ = H−1DωH = 2Sωµλ hµλ + 2Sω(µ
αkλ)α hµλ

= 2Sω + 2Sωλ
ν kλ

ν ,

which implies that

(3.14) DωH = 2H(Sω − Sωλ
ν kν

λ).

Substituting (3.1) and (3.2) into (3.14), and making use of (2.6)(c), we
obtain (3.8).

Theorem 3.5. The partial derivative of φ, given by (2.6)(d), is given
by

(3.15) ∂ωφ = − 4

Ωn+2

n−2∑
s=0

Ωs+2 ((n−s−1)kω
γ + (n−s+1)kω

γ)∇βkγ
β,
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Proof. Making use of the definition of the covariant derivative with
respect to {λ

ν
µ}, and ∇ωhλµ = 0, we obtain

∂ωφ = ∂ω((2)kβ
β) = −∂ω(kαβkαβ)

= −∇ω(kαβkαβ) = −2kαβ ∇ωkαβ.
(3.16)

Substituting (2.18) into (3.16), and making use of (2.6)(c), we obtain
(3.15).

Theorem 3.6. The partial derivative of g, given by (2.6)(a), is given
by

(3.17) ∂ωg =
2g

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−1)kω

γ ∇βkγ
β,

Proof. In (2.20), let

(3.18) Γν
λµ = {λ

ν
µ}+ Uν

λµ + Sλµ
ν ,

then

(3.19) U ν
λµ = − 2

Ωn+2

n−2∑
s=0

Ωs+2 k(λ
νkµ)α

(n−s−3)kγα∇βkγ
β.

Since G is a density of weigh 2, making use of (3.12) and (3.18), we
obtain

2GSω = DωG = G{∂ω(ln G)− 2Γα
αω}

= G{∂ω(ln G)− ∂ω(lnH) + 2Sω − 2Uω},(3.20)

where

(3.21) Uα
αω = Uω.

Making use of (2.6)(a), the equation (3.20) is equivalent to

(3.22) 2Uω = ∂ω(ln g) =
1

g
∂ωg.

On the other hand, making use of (2.6)(c), (3.19) and (3.21), we obtain

(3.23) Uω =
1

Ωn+2

n−2∑
s=0

Ωs+2
(n−s−1)kω

γ ∇βkγ
β.

Substituting (3,23) into (3.22), we obtain (3.17).
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