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FERMAT-TYPE EQUATIONS FOR MOBIUS
TRANSFORMATIONS

Dong-IL Kim

ABSTRACT. A Fermat-type equation deals with representing a nonzero
constant as a sum of kth powers of nonconstant functions. Suppose
that k& > 2. Consider >.F_, f;(2)* = 1. Let p be the smallest number
of functions that give the above identity. We consider the Fermat-
type equation for Mobius transformations and obtain & < p < k+1.

1. Introduction

A Fermat-type equation is to represent a nonzero constant as a sum
of kth powers of nonconstant functions. We allow complex coefficients in
these problems. Let k& and n be natural numbers. Consider the equation

of the form
Z fz(z)k =C,
i=1

where C' is a nonzero constant. Suppose that

(1.1) > fil)F =1
i=1

Then, for any choice of the branch of C'/* we get

n L k

3 (CE fi(z)> —C.

i=1
Thus any nonzero constant can be represented by the sum of n kth
powers of nonconstant functions. Equations of the form (1.1) are called
Fermat-type equations.
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DEFINITION 1.1. Suppose that £ > 2 and that n > 2. Suppose that
S is a set of functions. Let f1, fo,..., f, be nonconstant functions in S
satisfying

(1.2) Z filz)F =1.

Fs(k) denotes the smallest number n satisfying the equation (1.2).

We denote the sets of linear polynomials, polynomials, entire func-
tions, rational functions, and meromorphic functions by L, P, E, R
and M respectively. Newman and Slater showed that any nonzero con-
stant can be represented by a sum of (k+ 1) kth powers of nonconstant
polynomials [9]. Therefore Fermat-type equations for P, E, R and M
are solvable.

THEOREM 1.1 ([8]). We have the following result for the equation (1.2).
(1.3) Fp(k) < [(4k +1)'?]
where [z] = max{m € Z | m < z}.

Hence [V4k + 1] is an upper bound for Fp(k), Fg(k), Fr(k) and
Fu (k).

THEOREM 1.2. We have the following results for the equation (1.2).

(1.4) Folk) > %—I—\/k%—i.
(1.5) Fulk) > %ﬂ/mi
(1.6) Fr(k) > k+ 1.
(1.7) Fulk) > VEiFL

Theorem 1.2 is a collection of results to be found in [2], [3], [5], [9]
and [10].

THEOREM 1.3 ([7]). We have the following result for the equation (1.2).
(1.8) Fr(k)=Fk+1.

More details and results can be found in the survey papers; see [4]
and [6].
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DEFINITION 1.2. A Mobius transformation, also called a linear frac-

tional transformation or a bilinear transformation, is a map
az+b

1.9 = d—bc#0).

(1.9 f5) = 2 (ad —be £0)

We denote the set of Mobius transformations by 7.

2. Fermat-type equations for Mobius transformations

Now we prove our theorems.

LEMMA 2.1. Suppose that k > 2 and that n > 2. Let fi, fo,..., fn
be nonconstant linear polynomials satisfying

(2.1) > hie)t =2t

Suppose that q is the smallest number n satisfying the equation (2.1).
Then, q > k.

Proof. Let ¢ be the smallest number n satisfying the equation (2.1).

Then we can write
q

(2.2) Z(aiz + b))t = 2k

i=1
Now, we suppose that ¢ < k and will obtain a contradiction. Ac-
cording to the minimality of ¢, all the (a;z + b;)* with 1 < i < ¢ are
linearly independent. Hence we can have b; = 0 for at most one i. Then
(b; + aiz)* = b (1 + oy ) if b; # 0. Suppose that b* — B; and that
‘;—Z = A, for each i.
Suppose that by, =0 and b; # 0 for 1 <7 < ¢ — 1. Then

q

Z(aiz+bi)k = a2 +ZB 1+ Aiz)*

i=1
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Since the right hand side of the equation (2.2) is equal to 2*, we get, in
particular, the system of equations

q—1
(2.3) > A'B;=0 for0<r<k-1

i=1

Because ¢ < k, we use ¢ — 1 equations for 0 < r < ¢ — 2. Now consider
B; for 1 <17 < ¢ —1 as unknowns. Then the coefficients form a square
matrix M; whose determinant is given by

1 1 e 1
A, Ay oo Ay
| M| = A Ay? Aq—l2
A2 A2 Aq71q_2

Since the determinant of M; is the van der Monde determinant [1], we
get

M| = JJ(A; - A).

1<j

Since all the (a;z + b;)* with 1 < i < ¢ are linearly independent, we
have A, # A; for i # j and we get |M;| # 0. Hence the system (2.3)
of homogeneous linear equations has only the trivial solution and so
b* = B; =0 for all i with 1 < i < g—1. Thus b; = 0 for all i with
1 <i<qg—1. This is a contradiction.

Suppose that b; # 0 for each i. Then

a5 (e (5 )

=1 r=0

Because the right hand side of the equation (2.2) is equal to z*, we get

q
(2.4) Y A'Bi=0 for0<r<k-1
=1
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By using ¢ equations for 0 < r < g — 1, we have a coefficient matrix M,
whose determinant is given by

1 1 ce 1
Al A2 ce Aq
|M2| _ A12 A22 . Aq2
At Al A

Since |Ms| # 0, the system (2.4) has only the trivial solution and so
b* = B; = 0 for all i. Thus b; = 0 for all 7. This is a contradiction.
Therefore we get q > k. O

EXAMPLE 2.1. We define w = ¢*™/(*+1) Then
k1 N
z+ w &
= > (i) -
7j=1
Thus, the equation (2.1) is solvable.

THEOREM 2.2. Suppose that k > 2 and that n > 2. Let fi1, fa,..., fn
be nonconstant Mébius transformations satistying

(2.6) Z fi(z)F =1

Suppose that at least one of the f; is not a linear polynomial and that p
is the smallest number n satisfying the equation (2.6). Then, p > k.

We do not need to consider the case that all functions f; are linear
polynomials because of Theorem 1.3.

Proof. Let p be the smallest number n satisfying the equation (2.6).
Suppose that

(2.7) >_fi@)f =1,

where each f; is a Mdbius transformation. Since at least one of the f;
is not a linear polynomial, without loss of generality, we can suppose
that fi,..., fs are linear polynomials (if s = 0, then there are no linear
polynomials) while the remaining f; have finite poles.

Any f; with a finite pole zy can be written as (az+b)/(z— zp). Divide
the functions f; with finite poles into groups G, ..., G, so that those
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functions in a group G; have the same finite pole z;. Suppose that the
group G; consists of f;,..., f;, with the pole z;. Since all the other
functions appearing in the equation (2.7) have no pole at z;,

Im
k
(2.8) > fi(2)
=71
must have no pole at z;. Since no function f; in G is a constant function,
there are at least two functions, that is, j,, — j1 > 1.
For j; <1 < j,,, we can write

fi(z) = (aiz + b;) /(2 — ).
Then we get

Jm Jm
1
k k

1=)1 1=J1
It follows that

Jm

Z(aiz + b)*,

=J1
which is a polynomial of degree at most k, must have a zero of order at
least k£ at z;. Hence for some nonzero constant C, we must have

Jm

(2.9) Z(aiz +b,)F = Cj(2 — )"

1=J1

Thus we get
Jm Jm k
k (CLiZ -+ b,L) .
;fz(z) _g (Z—Zj)k _Cj

and so any such group adds up to a constant.
Since we may replace z — z; by z in the equation (2.9), for any choice
of the branch of C;1/*, we get

Jm k
a; (2 + z; +bl
(2.10) Z( ( C.ljz ) = 2~
J

=71

Hence, by Lemma 2.1, we get j,, > k for each group G;. Therefore we
obtain p = s + Z;lem > k. ]
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THEOREM 2.3. We have the following result for the equation (1.2).
k< Fp(k)<k+1.
Proof. We get this result by Theorem 1.3 and Theorem 2.2. O]
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