FERMAT-TYPE EQUATIONS FOR MÖBIUS TRANSFORMATIONS

Dong-IL Kim

Abstract

A Fermat-type equation deals with representing a nonzero constant as a sum of k th powers of nonconstant functions. Suppose that $k \geq 2$. Consider $\sum_{i=1}^{p} f_{i}(z)^{k}=1$. Let p be the smallest number of functions that give the above identity. We consider the Fermattype equation for Möbius transformations and obtain $k \leq p \leq k+1$.

1. Introduction

A Fermat-type equation is to represent a nonzero constant as a sum of k th powers of nonconstant functions. We allow complex coefficients in these problems. Let k and n be natural numbers. Consider the equation of the form

$$
\sum_{i=1}^{n} f_{i}(z)^{k}=C
$$

where C is a nonzero constant. Suppose that

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(z)^{k}=1 \tag{1.1}
\end{equation*}
$$

Then, for any choice of the branch of $C^{1 / k}$, we get

$$
\sum_{i=1}^{n}\left(C^{\frac{1}{k}} f_{i}(z)\right)^{k}=C
$$

Thus any nonzero constant can be represented by the sum of $n k$ th powers of nonconstant functions. Equations of the form (1.1) are called Fermat-type equations.

[^0]Definition 1.1. Suppose that $k \geq 2$ and that $n \geq 2$. Suppose that S is a set of functions. Let $f_{1}, f_{2}, \ldots, f_{n}$ be nonconstant functions in S satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(z)^{k}=1 \tag{1.2}
\end{equation*}
$$

$F_{S}(k)$ denotes the smallest number n satisfying the equation (1.2).
We denote the sets of linear polynomials, polynomials, entire functions, rational functions, and meromorphic functions by L, P, E, R and M respectively. Newman and Slater showed that any nonzero constant can be represented by a sum of $(k+1) k$ th powers of nonconstant polynomials [9]. Therefore Fermat-type equations for P, E, R and M are solvable.

Theorem 1.1 ([8]). We have the following result for the equation (1.2).

$$
\begin{equation*}
F_{P}(k) \leq\left[(4 k+1)^{1 / 2}\right], \tag{1.3}
\end{equation*}
$$

where $[x]=\max \{m \in \mathbb{Z} \mid m \leq x\}$.
Hence $[\sqrt{4 k+1}]$ is an upper bound for $F_{P}(k), F_{E}(k), F_{R}(k)$ and $F_{M}(k)$.

Theorem 1.2. We have the following results for the equation (1.2).

$$
\begin{align*}
F_{P}(k) & >\frac{1}{2}+\sqrt{k+\frac{1}{4}} \tag{1.4}\\
F_{E}(k) & \geq \frac{1}{2}+\sqrt{k+\frac{1}{4}} \tag{1.5}\\
F_{R}(k) & >\sqrt{k+1} \tag{1.6}\\
F_{M}(k) & \geq \sqrt{k+1} . \tag{1.7}
\end{align*}
$$

Theorem 1.2 is a collection of results to be found in [2], [3], [5], [9] and [10].

Theorem 1.3 ([7]). We have the following result for the equation (1.2).

$$
\begin{equation*}
F_{L}(k)=k+1 \tag{1.8}
\end{equation*}
$$

More details and results can be found in the survey papers; see [4] and [6].

Definition 1.2. A Möbius transformation, also called a linear fractional transformation or a bilinear transformation, is a map

$$
\begin{equation*}
f(z)=\frac{a z+b}{c z+d}, \quad(a d-b c \neq 0) \tag{1.9}
\end{equation*}
$$

We denote the set of Möbius transformations by T.

2. Fermat-type equations for Möbius transformations

Now we prove our theorems.
Lemma 2.1. Suppose that $k \geq 2$ and that $n \geq 2$. Let $f_{1}, f_{2}, \ldots, f_{n}$ be nonconstant linear polynomials satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(z)^{k}=z^{k} \tag{2.1}
\end{equation*}
$$

Suppose that q is the smallest number n satisfying the equation (2.1). Then, $q \geq k$.

Proof. Let q be the smallest number n satisfying the equation (2.1). Then we can write

$$
\begin{equation*}
\sum_{i=1}^{q}\left(a_{i} z+b_{i}\right)^{k}=z^{k} . \tag{2.2}
\end{equation*}
$$

Now, we suppose that $q<k$ and will obtain a contradiction. According to the minimality of q, all the $\left(a_{i} z+b_{i}\right)^{k}$ with $1 \leq i \leq q$ are linearly independent. Hence we can have $b_{i}=0$ for at most one i. Then $\left(b_{i}+a_{i} z\right)^{k}=b_{i}{ }^{k}\left(1+\frac{a_{i}}{b_{i}} z\right)^{k}$ if $b_{i} \neq 0$. Suppose that $b_{i}{ }^{k}=B_{i}$ and that $\frac{a_{i}}{b_{i}}=A_{i}$ for each i.

Suppose that $b_{q}=0$ and $b_{i} \neq 0$ for $1 \leq i \leq q-1$. Then

$$
\begin{aligned}
\sum_{i=1}^{q}\left(a_{i} z+b_{i}\right)^{k} & =a_{q}{ }^{k} z^{k}+\sum_{i=1}^{q-1} B_{i}\left(1+A_{i} z\right)^{k} \\
& =a_{q}{ }^{k} z^{k}+\sum_{i=1}^{q-1} B_{i}\left(\sum_{r=0}^{k}\binom{k}{r} A_{i}{ }^{r} z^{r}\right) \\
& =a_{q}{ }^{k} z^{k}+\sum_{r=0}^{k}\binom{k}{r} z^{r}\left(\sum_{i=1}^{q-1} B_{i} A_{i}^{r}\right) .
\end{aligned}
$$

Since the right hand side of the equation (2.2) is equal to z^{k}, we get, in particular, the system of equations

$$
\begin{equation*}
\sum_{i=1}^{q-1} A_{i}^{r} B_{i}=0 \quad \text { for } 0 \leq r \leq k-1 \tag{2.3}
\end{equation*}
$$

Because $q<k$, we use $q-1$ equations for $0 \leq r \leq q-2$. Now consider B_{i} for $1 \leq i \leq q-1$ as unknowns. Then the coefficients form a square matrix M_{1} whose determinant is given by

$$
\left|M_{1}\right|=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
A_{1} & A_{2} & \cdots & A_{q-1} \\
A_{1}{ }^{2} & A_{2}{ }^{2} & \cdots & A_{q-1}{ }^{2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1}{ }^{q-2} & A_{2}{ }^{q-2} & \cdots & A_{q-1}{ }^{q-2}
\end{array}\right| .
$$

Since the determinant of M_{1} is the van der Monde determinant [1], we get

$$
\left|M_{1}\right|=\prod_{i<j}\left(A_{j}-A_{i}\right) .
$$

Since all the $\left(a_{i} z+b_{i}\right)^{k}$ with $1 \leq i \leq q$ are linearly independent, we have $A_{i} \neq A_{j}$ for $i \neq j$ and we get $\left|M_{1}\right| \neq 0$. Hence the system (2.3) of homogeneous linear equations has only the trivial solution and so $b_{i}{ }^{k}=B_{i}=0$ for all i with $1 \leq i \leq q-1$. Thus $b_{i}=0$ for all i with $1 \leq i \leq q-1$. This is a contradiction.

Suppose that $b_{i} \neq 0$ for each i. Then

$$
\sum_{i=1}^{q}\left(a_{i} z+b_{i}\right)^{k}=\sum_{r=0}^{k}\binom{k}{r} z^{r}\left(\sum_{i=1}^{q} B_{i} A_{i}^{r}\right)
$$

Because the right hand side of the equation (2.2) is equal to z^{k}, we get

$$
\begin{equation*}
\sum_{i=1}^{q} A_{i}^{r} B_{i}=0 \quad \text { for } 0 \leq r \leq k-1 \tag{2.4}
\end{equation*}
$$

By using q equations for $0 \leq r \leq q-1$, we have a coefficient matrix M_{2} whose determinant is given by

$$
\left|M_{2}\right|=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
A_{1} & A_{2} & \cdots & A_{q} \\
A_{1}{ }^{2} & A_{2}{ }^{2} & \cdots & A_{q}{ }^{2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1}{ }^{q-1} & A_{2}{ }^{q-1} & \cdots & A_{q}{ }^{q-1}
\end{array}\right| .
$$

Since $\left|M_{2}\right| \neq 0$, the system (2.4) has only the trivial solution and so $b_{i}{ }^{k}=B_{i}=0$ for all i. Thus $b_{i}=0$ for all i. This is a contradiction. Therefore we get $q \geq k$.

Example 2.1. We define $\omega=e^{2 \pi i /(k+1)}$. Then

$$
\begin{equation*}
\sum_{j=1}^{k+1}\left(\frac{z+\omega^{j}}{(k+1)^{1 / k}}\right)^{k}=z^{k} \tag{2.5}
\end{equation*}
$$

Thus, the equation (2.1) is solvable.
Theorem 2.2. Suppose that $k \geq 2$ and that $n \geq 2$. Let $f_{1}, f_{2}, \ldots, f_{n}$ be nonconstant Möbius transformations satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(z)^{k}=1 \tag{2.6}
\end{equation*}
$$

Suppose that at least one of the f_{i} is not a linear polynomial and that p is the smallest number n satisfying the equation (2.6). Then, $p \geq k$.

We do not need to consider the case that all functions f_{i} are linear polynomials because of Theorem 1.3.

Proof. Let p be the smallest number n satisfying the equation (2.6). Suppose that

$$
\begin{equation*}
\sum_{i=1}^{p} f_{i}(z)^{k}=1 \tag{2.7}
\end{equation*}
$$

where each f_{i} is a Möbius transformation. Since at least one of the f_{i} is not a linear polynomial, without loss of generality, we can suppose that f_{1}, \ldots, f_{s} are linear polynomials (if $s=0$, then there are no linear polynomials) while the remaining f_{i} have finite poles.

Any f_{i} with a finite pole z_{0} can be written as $(a z+b) /\left(z-z_{0}\right)$. Divide the functions f_{i} with finite poles into groups G_{1}, \ldots, G_{t} so that those
functions in a group G_{j} have the same finite pole z_{j}. Suppose that the group G_{j} consists of $f_{j_{1}}, \ldots, f_{j_{m}}$ with the pole z_{j}. Since all the other functions appearing in the equation (2.7) have no pole at z_{j},

$$
\begin{equation*}
\sum_{i=j_{1}}^{j_{m}} f_{i}(z)^{k} \tag{2.8}
\end{equation*}
$$

must have no pole at z_{j}. Since no function f_{i} in G_{j} is a constant function, there are at least two functions, that is, $j_{m}-j_{1} \geq 1$.

For $j_{1} \leq i \leq j_{m}$, we can write

$$
f_{i}(z)=\left(a_{i} z+b_{i}\right) /\left(z-z_{j}\right) .
$$

Then we get

$$
\sum_{i=j_{1}}^{j_{m}} f_{i}(z)^{k}=\frac{1}{\left(z-z_{j}\right)^{k}} \sum_{i=j_{1}}^{j_{m}}\left(a_{i} z+b_{i}\right)^{k}
$$

It follows that

$$
\sum_{i=j_{1}}^{j_{m}}\left(a_{i} z+b_{i}\right)^{k}
$$

which is a polynomial of degree at most k, must have a zero of order at least k at z_{j}. Hence for some nonzero constant C_{j}, we must have

$$
\begin{equation*}
\sum_{i=j_{1}}^{j_{m}}\left(a_{i} z+b_{i}\right)^{k}=C_{j}\left(z-z_{j}\right)^{k} \tag{2.9}
\end{equation*}
$$

Thus we get

$$
\sum_{i=j_{1}}^{j_{m}} f_{i}(z)^{k}=\sum_{i=j_{1}}^{j_{m}} \frac{\left(a_{i} z+b_{i}\right)^{k}}{\left(z-z_{j}\right)^{k}}=C_{j}
$$

and so any such group adds up to a constant.
Since we may replace $z-z_{j}$ by z in the equation (2.9), for any choice of the branch of $C_{j}{ }^{1 / k}$, we get

$$
\begin{equation*}
\sum_{i=j_{1}}^{j_{m}}\left(\frac{a_{i}\left(z+z_{j}\right)+b_{i}}{C_{j}^{1 / k}}\right)^{k}=z^{k} \tag{2.10}
\end{equation*}
$$

Hence, by Lemma 2.1, we get $j_{m} \geq k$ for each group G_{j}. Therefore we obtain $p=s+\sum_{j=1}^{t} j_{m} \geq k$.

Theorem 2.3. We have the following result for the equation (1.2).

$$
k \leq F_{T}(k) \leq k+1 .
$$

Proof. We get this result by Theorem 1.3 and Theorem 2.2.

References

[1] C.W. Curtis, Linear Algebra, Springer-Verlag, New York, 1984, 161-162.
[2] H. Fujimoto, On meromorphic maps into the complex projective space, J. Math. Soc. Japan 26 (1974), 272-288.
[3] M. Green Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75.
[4] G. Gundersen, Complex functional equations, Proceedings of the Summer School, Complex Differential and Functional Equations, Mekrijärvi 2000, ed. by Ilpo Laine, University of Joensuu, Department of Mathematics Report Series No. 5 (2003), 21-50.
[5] W.K. Hayman, Waring's problem für analytische Funktionen, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1984 (1985), 1-13.
[6] W.K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. 36 (2004), 433-454.
[7] D.-I. Kim, Waring's problem for linear polynomials and Laurent polynomials, Rocky Mountain J. Math. 35 (2005), no. 2, 1533-1553.
[8] J. Molluzzo Monotonicity of quadrature formulas and polynomial representation, Doctoral thesis, Yeshiva University, 1972.
[9] D. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory 11 (1979), 477-487.
[10] N. Toda, On the functional equation $\sum_{i=0}^{p} a_{i} f_{i}^{n_{i}}=1$, Tôhoku Math. J. 23 (1971), 289-299.

Department of Mathematics
Hallym University
Chuncheon, 200-702, Republic of Korea
E-mail: dikim@hallym.ac.kr

[^0]: Received December 16, 2009. Revised January 22, 2010. Accepted February 4, 2010.

 2000 Mathematics Subject Classification: 30D05, 30D35.
 Key words and phrases: Fermat-type equation, Möbius transformation.

