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FERMAT-TYPE EQUATIONS FOR MÖBIUS

TRANSFORMATIONS

Dong-Il Kim

Abstract. A Fermat-type equation deals with representing a nonzero
constant as a sum of kth powers of nonconstant functions. Suppose
that k ≥ 2. Consider

∑p
i=1 fi(z)k = 1. Let p be the smallest number

of functions that give the above identity. We consider the Fermat-
type equation for Möbius transformations and obtain k ≤ p ≤ k +1.

1. Introduction

A Fermat-type equation is to represent a nonzero constant as a sum
of kth powers of nonconstant functions. We allow complex coefficients in
these problems. Let k and n be natural numbers. Consider the equation
of the form

n∑
i=1

fi(z)k = C,

where C is a nonzero constant. Suppose that

(1.1)
n∑

i=1

fi(z)k = 1.

Then, for any choice of the branch of C1/k, we get
n∑

i=1

(
C

1
k fi(z)

)k

= C.

Thus any nonzero constant can be represented by the sum of n kth
powers of nonconstant functions. Equations of the form (1.1) are called
Fermat-type equations.
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Definition 1.1. Suppose that k ≥ 2 and that n ≥ 2. Suppose that
S is a set of functions. Let f1, f2, . . . , fn be nonconstant functions in S
satisfying

(1.2)
n∑

i=1

fi(z)k = 1.

FS(k) denotes the smallest number n satisfying the equation (1.2).

We denote the sets of linear polynomials, polynomials, entire func-
tions, rational functions, and meromorphic functions by L, P , E, R
and M respectively. Newman and Slater showed that any nonzero con-
stant can be represented by a sum of (k + 1) kth powers of nonconstant
polynomials [9]. Therefore Fermat-type equations for P , E, R and M
are solvable.

Theorem 1.1 ([8]). We have the following result for the equation (1.2).

(1.3) FP (k) ≤ [
(4k + 1)1/2

]
,

where [x] = max{m ∈ Z
∣∣ m ≤ x}.

Hence
[√

4k + 1
]

is an upper bound for FP (k), FE(k), FR(k) and
FM(k).

Theorem 1.2. We have the following results for the equation (1.2).

FP (k) >
1

2
+

√
k +

1

4
.(1.4)

FE(k) ≥ 1

2
+

√
k +

1

4
.(1.5)

FR(k) >
√

k + 1.(1.6)

FM(k) ≥
√

k + 1.(1.7)

Theorem 1.2 is a collection of results to be found in [2], [3], [5], [9]
and [10].

Theorem 1.3 ([7]). We have the following result for the equation (1.2).

(1.8) FL(k) = k + 1.

More details and results can be found in the survey papers; see [4]
and [6].
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Definition 1.2. A Möbius transformation, also called a linear frac-
tional transformation or a bilinear transformation, is a map

(1.9) f(z) =
az + b

cz + d
, (ad− bc 6= 0).

We denote the set of Möbius transformations by T .

2. Fermat-type equations for Möbius transformations

Now we prove our theorems.

Lemma 2.1. Suppose that k ≥ 2 and that n ≥ 2. Let f1, f2, . . . , fn

be nonconstant linear polynomials satisfying

(2.1)
n∑

i=1

fi(z)k = zk.

Suppose that q is the smallest number n satisfying the equation (2.1).
Then, q ≥ k.

Proof. Let q be the smallest number n satisfying the equation (2.1).
Then we can write

(2.2)

q∑
i=1

(aiz + bi)
k = zk.

Now, we suppose that q < k and will obtain a contradiction. Ac-
cording to the minimality of q, all the (aiz + bi)

k with 1 ≤ i ≤ q are
linearly independent. Hence we can have bi = 0 for at most one i. Then

(bi + aiz)k = bi
k
(
1 + ai

bi
z
)k

if bi 6= 0. Suppose that bi
k = Bi and that

ai

bi
= Ai for each i.
Suppose that bq = 0 and bi 6= 0 for 1 ≤ i ≤ q − 1. Then

q∑
i=1

(aiz + bi)
k = aq

kzk +

q−1∑
i=1

Bi(1 + Aiz)k

= aq
kzk +

q−1∑
i=1

Bi

(
k∑

r=0

(
k

r

)
Ai

rzr

)

= aq
kzk +

k∑
r=0

(
k

r

)
zr

(
q−1∑
i=1

BiAi
r

)
.
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Since the right hand side of the equation (2.2) is equal to zk, we get, in
particular, the system of equations

(2.3)

q−1∑
i=1

Ai
rBi = 0 for 0 ≤ r ≤ k − 1.

Because q < k, we use q − 1 equations for 0 ≤ r ≤ q − 2. Now consider
Bi for 1 ≤ i ≤ q − 1 as unknowns. Then the coefficients form a square
matrix M1 whose determinant is given by

|M1| =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
A1 A2 · · · Aq−1

A1
2 A2

2 · · · Aq−1
2

...
...

. . .
...

A1
q−2 A2

q−2 · · · Aq−1
q−2

∣∣∣∣∣∣∣∣∣∣

.

Since the determinant of M1 is the van der Monde determinant [1], we
get

|M1| =
∏
i<j

(Aj − Ai).

Since all the (aiz + bi)
k with 1 ≤ i ≤ q are linearly independent, we

have Ai 6= Aj for i 6= j and we get |M1| 6= 0. Hence the system (2.3)
of homogeneous linear equations has only the trivial solution and so
bi

k = Bi = 0 for all i with 1 ≤ i ≤ q − 1. Thus bi = 0 for all i with
1 ≤ i ≤ q − 1. This is a contradiction.

Suppose that bi 6= 0 for each i. Then

q∑
i=1

(aiz + bi)
k =

k∑
r=0

(
k

r

)
zr

(
q∑

i=1

BiAi
r

)
.

Because the right hand side of the equation (2.2) is equal to zk, we get

(2.4)

q∑
i=1

Ai
rBi = 0 for 0 ≤ r ≤ k − 1.
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By using q equations for 0 ≤ r ≤ q− 1, we have a coefficient matrix M2

whose determinant is given by

|M2| =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
A1 A2 · · · Aq

A1
2 A2

2 · · · Aq
2

...
...

. . .
...

A1
q−1 A2

q−1 · · · Aq
q−1

∣∣∣∣∣∣∣∣∣∣

.

Since |M2| 6= 0, the system (2.4) has only the trivial solution and so
bi

k = Bi = 0 for all i. Thus bi = 0 for all i. This is a contradiction.
Therefore we get q ≥ k.

Example 2.1. We define ω = e2πi/(k+1). Then

(2.5)
k+1∑
j=1

(
z + ωj

(k + 1)1/k

)k

= zk.

Thus, the equation (2.1) is solvable.

Theorem 2.2. Suppose that k ≥ 2 and that n ≥ 2. Let f1, f2, . . . , fn

be nonconstant Möbius transformations satisfying

(2.6)
n∑

i=1

fi(z)k = 1.

Suppose that at least one of the fi is not a linear polynomial and that p
is the smallest number n satisfying the equation (2.6). Then, p ≥ k.

We do not need to consider the case that all functions fi are linear
polynomials because of Theorem 1.3.

Proof. Let p be the smallest number n satisfying the equation (2.6).
Suppose that

(2.7)

p∑
i=1

fi(z)k = 1,

where each fi is a Möbius transformation. Since at least one of the fi

is not a linear polynomial, without loss of generality, we can suppose
that f1, . . . , fs are linear polynomials (if s = 0, then there are no linear
polynomials) while the remaining fi have finite poles.

Any fi with a finite pole z0 can be written as (az+b)/(z−z0). Divide
the functions fi with finite poles into groups G1, . . . , Gt so that those
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functions in a group Gj have the same finite pole zj. Suppose that the
group Gj consists of fj1 , . . . , fjm with the pole zj. Since all the other
functions appearing in the equation (2.7) have no pole at zj,

(2.8)

jm∑
i=j1

fi(z)k

must have no pole at zj. Since no function fi in Gj is a constant function,
there are at least two functions, that is, jm − j1 ≥ 1.

For j1 ≤ i ≤ jm, we can write

fi(z) = (aiz + bi)/(z − zj).

Then we get
jm∑

i=j1

fi(z)k =
1

(z − zj)k

jm∑
i=j1

(aiz + bi)
k.

It follows that
jm∑

i=j1

(aiz + bi)
k,

which is a polynomial of degree at most k, must have a zero of order at
least k at zj. Hence for some nonzero constant Cj, we must have

(2.9)

jm∑
i=j1

(aiz + bi)
k = Cj(z − zj)

k.

Thus we get
jm∑

i=j1

fi(z)k =

jm∑
i=j1

(aiz + bi)
k

(z − zj)k
= Cj

and so any such group adds up to a constant.
Since we may replace z− zj by z in the equation (2.9), for any choice

of the branch of Cj
1/k, we get

(2.10)

jm∑
i=j1

(
ai(z + zj) + bi

Cj
1/k

)k

= zk.

Hence, by Lemma 2.1, we get jm ≥ k for each group Gj. Therefore we

obtain p = s +
∑t

j=1 jm ≥ k.
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Theorem 2.3. We have the following result for the equation (1.2).

k ≤ FT (k) ≤ k + 1.

Proof. We get this result by Theorem 1.3 and Theorem 2.2.
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