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ALMOST LINDELÖF FRAMES

Mee Kyung Khang

Abstract. Generalizing Lindelöf frames and almost compact frames,
we introduce a concept of almost Lindelöf frames. Using a concept
of δ-filters on frames, we characterize almost Lindelöf frames and
then have their permanence properties. We also show that almost
Lindelöf regular D(ℵ1) frames are exactly Lindelöf frames. Finally
we construct an almost Lindelöfication of a frame L via the simple
extension of L associated with the set of all δ-filters F on L with∨{x∗|x ∈ F} = e.

1. Introduction and preliminaries

The concept of frames(=locales) was introduced by Ehresmann([3])
and Bénabou([1]) and Isbell has pointed out the importance of frames for
a study of topological structures([5]). In 1981, Johnstone showed the Ty-
chonoff theorem in the setting of frames without the axiom of choice([6])
and since then there were numerous authors who have produced remark-
able results on frames([7]). We have introduced a concept of Lindelöf
frames and Lindelöf biframes and obtained their Lindelöfications([8],
[9]).

This paper is a sequel to the above papers. It is well known that
almost compact spaces and its frame version are really important gen-
eralizations of compact spaces. Since dense elements can be defined in
a frame, one can easily have a counterpart of dense subcover in a frame.
The purpose of this paper is to introduce almost Lindelöf frames and
study them. Introducing δ-filters on frames, we characterize almost Lin-
delöf frames and then using simple extension associated with a certain
set of δ-filters on frames, we construct almost Lindelöfications of frames.
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First we collect basic definitions and results on frames. For general no-
tions and facts concerning frames, we refer to Johnstone[7] and Khang[9].

Definition 1.1. (1) A frame is a complete lattice L in which binary
meet distributes over arbitrary join, that is, x∧∨

S =
∨{x∧s ∈ S}

for any x in L and any subset S of L.
(2) A frame homomorphism is a map h : L → M between frames L

and M preserving all finitary meets and binary joins.

We will denote the bottom element of a frame L by 0 or 0L and the
top element by e or eL.

For any element a of a frame L, the map a ∧ : L → L preserves
arbitrary joins; hence it has a right adjoint, which will be denoted by
a → : L → L. In particular, a → 0 exists for any a in L and we write
a → 0 = a∗, called the pseudocomplement of a.

Definition 1.2. (1) An element d in a frame L is called dense if
d∗ = 0.

(2) A frame homomorphism h : L → M is called dense(codense, resp.)
if h(x) = 0(h(x) = e, resp.) implies x = 0(e, resp.).

We note that an element u in the frame Ω(X) of a topological space
(X, Ω(X)) is dense if and only if it is dense in the space.

Definition 1.3. (1) Let L be a frame and a, b in L. We say that
a is rather below b if there exists c in L such that a ∧ c = 0 and
b ∨ c = e, equivalently, a∗ ∨ b = e. In this case, we write a ≺ b.

(2) A frame L is said to be regular if for any a in L, a =
∨{b ∈ L|b ≺

a}.
We note that u ≺ v in Ω(X) means u ⊆ v, for a topological space

(X, Ω(X)) and it is clear that a topological space (X, Ω(X)) is regular if
and only if Ω(X) is a regular frame.

The following definition is a natural generalization of compact frames
and Lindelöf spaces.

Definition 1.4. A frame L is said to be a Lindelöf frame if for any
subset S of L with

∨
S = e, there is a countable subset C of S with∨

C = e.
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A 1-1 frame homomorphism is clearly codense and therefore the fol-
lowing is immediate :

Proposition 1.5. If h : L → M is a 1-1 frame homomorphism and
M is a Lindelöf frame, then L is a Lindelöf frame.

Definition 1.6. ([2]) A frame L is said to be a D(ℵ1) frame if for
any a in L and any sequence (bn)n∈N in L, a ∨ (

∧
n∈N

bn) =
∧

n∈N

(a ∨ bn).

Proposition 1.7. If xn ≺ y for all n in N in a D(ℵ1) frame L, then∨
n∈N

xn ≺ y in L.

Definition 1.8. A nucleus k on a frame L is a map k : L → L such
that for any a, b in L,

(1) a ≤ k(a)
(2) k ◦ k(a) = k(a)
(3) k(a ∧ b) = k(a) ∧ k(b)

For a nucleus k on a frame L, Lk = Fix(k) = {x ∈ L | k(x) = x} is
a frame, the corestriction k0 : L → Fix(k) of k is an onto frame homo-
morphism and Lk is called a sublocale of L.

For any a in L, consider the nucleus ca : L → L defined by ca(x) =
a ∨ x. Then Fix(ca) =↑ a, which is called a closed sublocale of L.

Furthermore, the map j : L → L defined by j(a) = a∗∗ is also a
nucleus and the sublocale Fix(j) = {a ∈ L | a∗∗ = a} is a smallest dense
sublocale of L and the corresponding onto frame homomorphism will be
denoted by j0 : L → L∗∗.

2. Almost Lindelöf frames

In this section, we introduce and study almost Lindelöf frames and
almost Lindelöfications of frames.

Definition 2.1. A subset D of a poset L is said to be :

(1) countably down directed if every countable subset of D has a lower
bound in D.

(2) a δ-filter if it is a countably down directed filter.
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We note that a filter on ℘(X) is a δ-filter if and only if it is closed
under countable intersections. More generally, a filter F in a complete
lattice L is a δ-filter if and only if it is closed under countable meets.
Thus the intersection of a non-empty family of δ-filters on a complete
lattice L is again a δ-filter on L. Moreover, if F is a δ-filter on L, then
for any sequence (xn)n∈N ,

∧
k∈N

xk 6= 0, i.e., F has the countable meet

property.

In the following, we will assume that L is a complete lattice.

Remark. (1) Let A be a subset of L. Then there is a δ-filter F
with A ⊆ F if and only if A has the countable meet property.
Indeed, the condition is clearly necessary. For the converse, let
F = {a ∈ L | there is a countable subset C of A with

∧
C ≤ a},

then F is clearly a δ-filter containing A, which will be called a
δ-filter generated by A.

(2) Let (Fı)ı∈I be a non-empty family of δ-filters on L. Then there is
a δ-filter F on L with F ⊇ ⋃

Fı if and only if for any countable
subset J of I and aı ∈ Fı ( ı ∈ J),

∧
ı∈J

aı 6= 0. In particular, let F

be a δ-filter on L and a in L. Then there is a δ-filter G on L with
G ⊇ F and a ∈ G if and only if for any d ∈ F , d ∧ a 6= 0.

Definition 2.2. A frame L is said to be an almost Lindelöf frame if
for any subset S of L with

∨
S = e, there is a countable subset A of S

such that (
∨

A)∗ = 0 .

Example 2.3. (1) An almost compact frame is an almost Lindelöf
frame.

(2) A Lindelöf frame is an almost Lindelöf frame.
(3) For a topological space (X, Ω(X)), Ω(X) is an almost Lindelöf frame

if and only if (X, Ω(X)) is an almost Lindelöf space.
(4) The regular open set lattice Oreg(R) on the real line is non-spatial

since it is an atomless Boolean algebra([7]). Thus Oreg(R) is a
non-spatial almost Lindelöf frame.

Theorem 2.4. Let L be a frame. Then the following are equivalent :

1) L is an almost Lindelöf frame.
2) For any δ-filter F in L,

∨{x∗|x ∈ F} 6= e.

Proof. 1) ⇒ 2) Suppose not, then there is a δ-filter F in L such that∨{x∗|x ∈ F} = e. By 1), there is a countable subset G of F such
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that (
∨{y∗|y ∈ G})∗ = 0. Since (

∨{y∗|y ∈ G})∗ =
∧{y∗∗|y ∈ G} and

y ≤ y∗∗ for any y in L,
∧

G = 0, which is a contradiction to the fact
that F is a δ-filter.

2) ⇒ 1) Suppose that there is a subset S of L such that
∨

S = e but
for any countable subset A of S, (

∨
A)∗ 6= 0. Thus {x∗|x ∈ S} has the

countable meet property and hence generates a δ-filter, say U . Then
U = {y ∈ L | there is a countable subset A of S such that

∧{x∗|x ∈
a} ≤ y}.
Using x ≤ x∗∗ for any x in L, one has e =

∨
S ≤ ∨{x∗∗ | x ∈ S} ≤∨{u∗ | u ∈ U}, because {x∗ | x ∈ S} ⊆ U . Thus

∨{u∗ | u ∈ U} = e,
which is a contradiction to 2).

Proposition 2.5. Let f : L → M be a dense frame homomorphism.
If M is an almost Lindelöf frame, then so is L

Proof. Suppose not, then there is a δ-filter F in L such that
∨{x∗|x ∈

F} = e. Let G = {y ∈ M | f(x) ≤ y for some x ∈ F}. Then clearly G
is an upper set. Take any sequence (yn)n∈N in G, there is xn in F such
that f(xn) ≤ yn. Thus

∧
n∈N

xn is in F and
∧

n∈N

yn ≥
∧

n∈N

f(xn) ≥ f(
∧

n∈N

xn)

; hence
∧

n∈N

yn is in G. Since f is dense, 0 /∈ G. Thus G is a δ-filter on M .

Since x∧x∗ = 0 in L implies that 0 = f(0) = f(x)∧f(x∗), f(x∗) ≤ f(x)∗.
Now, we have eM = f(eL) = f(

∨{x∗|x ∈ F}) =
∨{f(x∗) | x ∈ F}

≤ ∨{f(x)∗ | x ∈ F} ≤ ∨{y∗ | y ∈ G}, for {f(x) | x ∈ F} ⊆ G. Thus
eM =

∨{y∗ | y ∈ G}. But this contradicts to the fact that M is an
almost Lindelöf frame.

Corollary 2.6. If L is a frame and L∗∗ = {x ∈ L | x = x∗∗} is an
almost Lindelöf frame, then so is L.

Proof. Since j0 : L → L∗∗ is a dense onto frame homomorphism, it is
immediate from the above proposition.

Proposition 2.7. If L is an almost Lindelöf frame and a is in L,
then ↑ a∗ = Lc(a∗) is also an almost Lindelöf frame.

Proof. Take any nonempty subset S of Lc(a∗) =↑ a∗ with
∨
↑a∗ S = e.

Since
∨
↑a∗ S =

∨
L S, there is a countable subset T of S with (

∨
T)∗ = 0.

If T = φ, then e = 0, that is, L is singleton ; hence we may assume that
T 6= φ. For any y in ↑ a∗ with y ∧ (

∨
T) = a∗, the bottom element of

↑ a∗, 0 = a∧a∗ = a∧y∧(
∨

T) implies that a∧y ≤ (
∨

T)∗ = 0 and hence
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a ∧ y = 0, i.e. y ≤ a∗. Thus y = a∗. Therefore the pseudocomplement
of

∨
T in ↑ a∗ is a∗. So Lc(a∗) is an almost Lindelöf frame.

Example 2.8. Let X be an uncountable set and p an element of X.
Let Ω(X) = {U ⊆ X | U = φ or p ∈ U}. Then (X, Ω(X)) is not a
Lindelöf space and hence Ω(X) is not a Lindelöf frame. But (X, Ω(X))
is almost compact, for {p} is an open dense subset of X. Thus Ω(X) is
an almost Lindelöf frame.

Proposition 2.9. Let L be a regular D(ℵ1) frame. Then L is a
Lindelöf frame if and only if L is an almost Lindelöf frame.

Proof. The condition is clearly necessary. For the converse, take any
subset S of L with

∨
S = e and let Ws = {x ∈ L | x ≺ s} for any s in S.

Since L is regular,
∨

Ws = s ; e =
∨

S =
∨
s∈S

(
∨

Ws) =
∨

(
⋃
s∈S

Ws). Since

L is an almost Lindelöf frame, there is a countable subset F of
⋃
s∈S

Ws

such that (
∨

F)∗ = 0. Thus for any y in F, there is sy in S such that
y ≺ sy ; hence there is cy in L such that y∧ cy = 0 and sy∨ cy = e. Since
(
∨

F) ∧ (
∧{cy | y ∈ F}) =

∨
z∈F

(z ∧ (
∧{cy | y ∈ F})) ≤ ∨

(z ∧ cz) = 0,
∧{cy | y ∈ F} ≤ (

∨
F)∗ = 0 so that

∧{cy | y ∈ F} = 0. Since L is
D(ℵ1),∨{sy | y ∈ F} =

∨{sy | y ∈ F} ∨ (
∧{cy | y ∈ F}) =

∧
z∈F

{cz ∨ ({sy | y ∈
F})} ≥ ∧

z∈F

{cz ∨ sz} = e.

Therefore
∨{sy | y ∈ F} = e and {sy | y ∈ F} is a countable subset of

S. In all, L is a Lindelöf frame.

In the following, we will construct almost Lindelöfication of a frame
by a certain simple extension of a frame.

Notation 2.10. Let L be a frame and X the set of all δ-filters F
such that

∨{x∗ | x ∈ F} = e. Then the subframe sXL = {(x, Σ) ∈
L×℘(X) | for any F in Σ, x ∈ F} of L×℘(X) is the simple extension of
L associated with X. Furthermore, for any x ∈ X, Σx = {F ∈ Σ | x ∈ F}.
And s : sXL → L defined by the restriction of the first projection is open,
dense and onto. (See [4] for the detail.)

Using the above notation, one has the following :

Theorem 2.11. Let L be a frame and X the set of all δ-filters F such
that

∨{x∗ | x ∈ F} = e. Then sXL is an almost Lindelöf frame.
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Proof. Suppose that there is a δ-filter G in sXL with
∨{v∗ | v ∈

G} = (e, X). Since s is dense and onto, s(G) is a filter in L. For any
sequence (xn)n∈N in s(G), there is (xn, Λn) in G for some Λn ∈ ℘(X) for
all n ∈ N . Since G is a δ-filter, there is (x, Λ) in G with (x, Λ) ≤ (xn, Λn)
for all n ∈ N . Thus x ≤ xn for all n ∈ N and x ∈ s(G). Therefore
s(G) is a δ-filter. Since s is open, s preserves pseudocomplements. Thus∨{u∗ | u ∈ s(G)} = e ; hence s(G) is in X. For any v = (x, Λ) in G,
(e, {s(G)}) ∧ v∗ = (e, {s(G)}) ∧ (x∗, Σx∗) = (x∗, {s(G)} ∩ Σx∗).
Since x = s(v) ∈ s(G), x∗ /∈ s(G) ; (e, {s(G)}) ∧ v∗ = (x∗, φ). Hence
(e, {s(G)}) = (e, {s(G)}) ∧ (e, X) = (e, {s(G)}) ∧ (

∨{v∗ | v ∈ G}) =∨
v∈G

((e, {s(G)})∧v∗) = ((
∨{x∗ | (x, Λ) ∈ G}), φ). This is a contradiction.

The above almost Lindelöfication s : sXL → L will be denoted by
δ : δL → L.

The proof of the following can be found in [4] and [10].

Proposition 2.12. Let X be a set of filters in a frame L, then an
element (x, Σ) in sXL is prime if and only if one of the following holds:

1) x is a prime element in L and Σ = Σx..
2) x = e and Σ = X− {F}, for some F ∈ X.

Using the above and the exactly same arguments as those in [4] and
[10], we have the following :

Theorem 2.13. A frame L is spatial if and only if δL is spatial.
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