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AN APPLICATION OF A LINKING METHOD TO A

GENERAL ELLIPTIC SYSTEM

Hyewon Nam

Abstract. In this work, we consider an elliptic system of three
equations in dimension greater than one. We prove that the system
has at least three nontrivial solutions by applying a linking theorem.

1. Introduction and background

Presently there are many significant results with respect to the elliptic
system

{ −4u = λu + δv + h1(x, u, v),
−4v = θu + νv + h2(x, u, v),

in Ω, where Ω ⊂ Rn is the bounded smooth domain, subject to Dirichlet
boundary conditions u = v = 0 on ∂Ω, hi, i = 1, 2 are real valued
functions and λ, δ, ν and θ are real numbers.[[5], [6]]

In this paper we prove the existence of three nontrivial solutions for
a general elliptic system. We use a variational approach and look for
critical points of a suitable functional I on a Hilbert space H. Since the
functional is strongly indefinite, it is convenient to use the notion of a
linking theorem. In Section 2, we find a suitable functional I on a Hilbert
space H. In Section 3, we prove the suitable version of the Palais-Smale
condition for the topological method. In Section 4, we apply the three
critical points theorem.

We recall some basic theorem and set up some terminology. Let H
be a Hilbert space and V a C2 complete connected Finsler manifold.
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Definition 1.1. The cuplength of a space V, denoted cuplength(V),
is the maximum number m of positive degree cohomology classes [ω1],
[ω2], · · · , [ωm] such that ω1 ∧ ω2 ∧ · · · ∧ ωm 6= 0 on V.

Suppose H = H0⊕H1⊕H2⊕H3 and let Hn = H0n⊕H1n⊕H2n⊕H3n

be a sequence of closed subspaces of H such that

Hin ⊂ Hi, 1 ≤ dim Hin < +∞ for each i = 0, · · · and n ∈ N

Moreover suppose that there exist e1 ∈ ∩∞n=1H1n, and e2 ∈ ∩∞n=1H2n,
with ‖e1‖ = ‖e2‖ = 1.

For any Y subspace of H, consider Bρ(Y ) := {u ∈ Y |‖u‖ ≤ ρ} and
denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Furthermore
define, for any e ∈ H,

QR(Y, e) := {u + ae ∈ Y ⊕ [e]|u ∈ Y, a ≥ 0, ‖u + ad‖ ≤ R}
and denote by ∂QR(Y, e) its boundary relative to Y ⊕ [e], and denote by
X = H × V .

We recall the three critical points theorem in [3].

Theorem 1.1. Suppose that f satisfies the (PS)∗ condition with
respect to Hn. In addition assume that there exist ρi, Ri, i = 1, 2, such
that 0 < ρi < Ri and

sup
∂QR1

(H2⊕H3,e1)×V

f < inf
∂Bρ1(H0⊕H1)×V

f,

sup
QR1

(H2⊕H3,e1)×V

f < +∞, inf
Bρ1(H0⊕H1)×V

f < −∞,

sup
∂QR2

(H3,e2)×V

f < inf
∂Bρ2(H0⊕H1⊕H2)×V

f,

sup
QR2

(H3,e2)×V

f < +∞, inf
Bρ2(H0⊕H1⊕H2)×V

f < −∞.

If R2 < R1, then there exist at least 3 critical levels of f . Moreover the
critical levels satisfy the following inequalities

inf
Bρ2 (H0⊕H1⊕H2)×V

f ≤ c1 ≤ sup
∂QR2

(H3,e2)×V

f < inf
∂Bρ2 (H0⊕H1⊕H2)×V

f ≤ c2

≤ sup
QR2

(H3,e2)×V

f ≤ sup
∂QR1

(H2⊕H3,e1)×V

f

< inf
∂Bρ1 (H1⊕H2)×V

f ≤ c3 ≤ sup
QR1

(H2⊕H3,e1)×V

f, .

and there exist at least 3 + 3 cuplength(V) critical points of f .
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2. Notations and main result

Let Ω ⊂ RN be a bounded domain with the smooth boundary and
H = W 1,p

0 (Ω), the usual Sobolev space with the norm ‖u‖2 =
∫
Ω
|∇u|2dx.

In this paper, we consider the existence of nontrivial solutions to the
elliptic system




−4u = au + δu+ + f1(x, u, v, w) in Ω,
−4v = bv + ηv− + f2(x, u, v, w) in Ω,
−4w = cw + f3(x, u, v, w) in Ω,
u = v = w = 0 on ∂Ω.

(1)

And there exists a function F : Ω̄×R3 → R such that ∂F
∂u

= f1,
∂F
∂v

= f2,

and ∂F
∂w

= f3 without loss of generality, we set

F (x, u, v, w)

=

∫ (u,v,w)

(0,0,0)

f1(x, u, v, w)du + f2(x, u, v, w)dv + f3(x, u, v, w)dw.

Then F ∈ C1(Ω̄×R3, R).
We consider the following assumptions.
(F1) There exist M > 0 and α > 2 such that

0 < αF (x, u, v, w) ≤ uFu(x, u, v, w) + vFv(x, u, v, w) + wFw(x, u, v, w)

for all (x, u, v, w) ∈ Ω̄×R3 with u2 + v2 + w2 > M2.
(F2) There exist constants a1 > 0 and a2 > 0 such that

|Fu(x, u, v, w)|+|Fv(x, u, v, w)|+|Fw(x, u, v, w)| ≤ a1+a2(|u|r+|v|r+|w|r)
where 1 ≤ r < (N + 2)/(N − 2) if N > 2, 1 ≤ r < ∞ otherwise.

(F3) For (0, v, w) → (0, 0, 0),

F (x, 0, v, w)

v2 + w2
→ 0.

Remark 2.1. The condition (F1) shows that there exist constants
b1 > 0 and b2 such that(cf. [2] )

F (x, u, v, w) ≥ b1(|u|α + |v|α + |w|α)− b2.

Let λk denote the eigenvalues and ek the corresponding eigenfunc-
tions, suitably normalized with respect to L2(Ω) inner product, of the
eigenvalue problem −∆u = λu in Ω, with Dirichlet boundary condition,
where each eigenvalue λk is respected as often as its multiplicity. We
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recall that 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi → +∞ and that e1 > 0 for all
x ∈ Ω. Then H = span{ei|i ∈ N}.

Let e1
i = (ei, 0, 0), e2

i = (0, ei, 0), and e3
i = (0, 0, ei). We define Hj =

span{ej
i |i ∈ N}, for j = 1, 2, 3 and E = H1 ⊕ H2 ⊕ H3 with the norm

‖(u, v, w)‖2
E = ‖u‖2 + ‖v‖2 + ‖w‖2.

We define the energy functional associated to (1) as

I(u, v, w) =
1

2

∫

Ω

(|∇u|2 + |∇u|2 + |∇w|2)dx− 1

2

∫

Ω

(au2 + bv2 + cw2)dx

−δ

2

∫

Ω

(u+)2dx− η

2

∫

Ω

(v−)2dx−
∫

Ω

F (x, u, v, w)dx(2)

It is easy to see that I ∈ C1(E, R) and thus it makes sense to lock for
solutions to (1) in weak sense as critical points for I i.e.(u, v, w) ∈ E
such that I ′(u, v, w) = 0, where

I ′(u, v, w) · (φ, ψ, σ) =

∫

Ω

(∇u∇φ +∇v∇ψ +∇w∇σ)dx

−
∫

Ω

(auφ + bvψ + cwσ)dx− δ

∫

Ω

u+φdx− η

∫

Ω

v−ψdx

−
∫

Ω

(f1(x, u, v, w)φ + f2(x, u, v, w)ψ + f3(x, u, v, w)σ)dx.

We will prove the following theorem.

Theorem 2.1. Assume F satisfies (F1), (F2) and (F3) with α = r+1.
If a, b, c, δ, and η are positive with a + δ < λ1, b + η < λ1 and c < λ1

then system (1) has at least three nontrivial solutions.

3. The Palais Smale star condition

In [1] the following definition is given.

Definition 3.1. We say that I verifies the Palais Smale star condi-
tion at level c ((PS)∗c) with respect to (En), if for any sequence (un) in E
such that un ∈ En, I(un) → c and I ′n(un) → 0 there exists a subsequence
of (un) which converges to a critical point for I.

Definition 3.2. A sequence (un) ⊂ E is said to be a (PS)∗c sequence
if un ∈ En, I(un) → c, I ′n(un) → 0 as n →∞.
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Remark 3.1. If any (PS)∗c sequence has a convergent subsequence,
then we say that I satisfies the (PS)∗c condition.

In this section we will prove the (PS)∗c condition which was required
for the application of Theorem 1.1. In the following, we consider the
following sequence of subspaces of E :

En = span{ej
i |i = 1, · · · , n and j = 1, 2, 3}, for n ≥ 1.

Lemma 3.1. Assume F satisfies (F1) and (F2) with α = r + 1. If
a + δ < λ1, b + η < λ1 and c < λ1, then any (PS)∗c sequence is bounded.

Proof. Let {(un, vn, wn)} ⊂ E be a sequence such that

(un, vn, wn) ∈ En, I(un, vn, wn) → c, I ′n(un, vn, wn) → 0 as n →∞
In the following we denote different constants by C1, C2 etc. (F1) and

Remark imply that

C1 +
1

2
o(1)(‖un‖+ ‖vn‖+ ‖wn‖)

≥ I(un, vn, wn)− 1

2
I ′n(un, vn, wn) · (un, vn, wn)

=
1

2

∫

Ω

(unf1 + vnf2 + wnf3)dx−
∫

Ω

Fdx

≥ (
α

2
− 1)

∫

Ω

F (x, un, vn, wn)dx

≥ (
α

2
− 1)b1

∫

Ω

(|un|α + |vn|α + |wn|α)dx− C2

≥ (
α

2
− 1)b1(‖un‖α

Lα + ‖vn‖α
Lα + ‖wn‖α

Lα)− C2(3)

On the other hand,

o(1)‖un‖ ≥ I ′n(un, vn, wn) · (un, 0, 0)

= ‖un‖2 − a

∫

Ω

u2
ndx− δ

∫

Ω

(u+
n )2dx−

∫

Ω

f1(x, un, vn, wn)undx,

o(1)‖vn‖ ≥ I ′n(un, vn, wn) · (0, vn, 0)

= ‖vn‖2 − b

∫

Ω

v2
ndx− η

∫

Ω

(v−n )2dx−
∫

Ω

f2(x, un, vn, wn)vndx.

o(1)‖wn‖ ≥ I ′n(un, vn, wn) · (0, 0, wn)

= ‖wn‖2 − c

∫

Ω

w2
ndx−

∫

Ω

f3(x, un, vn, wn)wndx.
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We know that ‖u‖2 ≥ λ1‖u‖2
L2 for u ∈ H and ‖u‖2

L2 ≥
∫
Ω
(u+)2dx. Using

(F2), we obtain

‖un‖2 + ‖vn‖2 + ‖wn‖2

≤
∫

Ω

(au2
n + bv2

n + cw2
n)dx + δ

∫

Ω

(u+
n )2dx + η

∫

Ω

(v−n )2dx

+

∫

Ω

(unf1 + vnf2 + wnf3)dx + o(1)(‖un‖+ ‖vn‖+ ‖wn‖)

≤ a + δ

λ1

‖un‖2 +
b + η

λ1

‖vn‖2 +
c

λ1

‖wn‖2

+o(1)(‖un‖+ ‖vn‖+ ‖wn‖)
+C3

∫

Ω

(|un|r+1 + |vn|r+1 + |wn|r+1)dx + C4.(4)

(4) imply that if a + δ < λ1, b + η < λ1 and c < λ1 then

‖un‖2 + ‖vn‖2 + ‖wn‖2 ≤ C5

∫

Ω

(|un|r+1 + |vn|r+1 + |wn|r+1)dx

+o(1)C6(‖un‖+ ‖vn‖+ ‖wn‖) + C7.(5)

Combining (3), (5) and using α = r + 1, one infers that

‖un‖2 + ‖vn‖2 + ‖wn‖2 ≤ o(1)C8(‖un‖+ ‖vn‖+ ‖wn‖) + C9.

This yields {(un, vn, wn)} is bounded.

Lemma 3.2. Assume F satisfies (F1) and (F2) with α = r + 1. If
a + δ < λ1, b + η < λ1 and c < λ1, then the functional I satisfies the
(PS)∗c condition with respect to En.

Proof. By Lemma 3.1, any (PS)∗c sequence {(un, vn, wn)} in E is
bounded and hence {(un, vn, wn)} has a weakly convergent subsequence.
That is there exist a subsequence {(unj

, vnj
, wnj

)} and (u, v, w) ∈ E,
with unj

⇀ u, vnj
⇀ v and wnj

⇀ w. Since {unj
}, {vnj

} and {wnj
} are

bounded, by Remark of the Rellich-Kondrachov compactness theorem
[4], unj

→ u, vnj
→ v and wnj

→ w and thus I satisfies the (PS)∗c
condition.
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4. Proof of main theorem

Lemma 4.1. Assume F satisfies (F3). If c < λ1, then there exists
ρ1 > 0 such that

inf
∂Bρ1(H3)

I > 0.

Proof. By (F3), for any ε > 0, there exists ρ > 0 such that

0 < ‖w‖ < ρ ⇒ |F (x, 0, 0, w)| < ε|w|2.
Then | ∫

Ω
F (x, 0, 0, w)dx| <

∫
Ω
|F (x, 0, 0, w)|dx <

∫
Ω

ε|w|2dx < ε
λ1
‖w‖2

and hence

I(0, 0, w) =
1

2

∫

Ω

|∇w|2dx− c

2

∫

Ω

w2dx−
∫

Ω

F (x, 0, 0, w)dx

>
1

2
‖w‖2 − c

2λ1

‖w‖2 − ε

λ1

‖w‖2

=
1

2
(1− c + 2ε

λ1

)‖w‖2 > 0

which gives the result for sufficiently small ε. Therefore we can choose
0 < ρ1 < ρ such that I(0, 0, w) > 0 for any ‖w‖ = ρ1.

Lemma 4.2. Assume F satisfies (F1). If a, b, c, δ, and η are positive,
then there exists an R > 0 such that for any R1 > R

sup
∂QR1

(H1⊕H2,e3
1)

I < 0.

Proof. In the following we denote different constants by C1, C2 etc.
Remark implies that

I(u, v, β1 e1) =
1

2

∫

Ω

(|∇u|2 + |∇v|2)dx +
λ1β

2
1

2
− 1

2

∫

Ω

(au2 + bv2)dx

−cβ2
1

2
− δ

2

∫

Ω

(u+)2dx− η

2

∫

Ω

(v−)2dx−
∫

Ω

F (x, u, v, β1e1)dx

≤ 1

2
‖u‖2 +

1

2
‖v‖2 +

λ1β
2
1

2
−

∫

Ω

F (x, u, v, β1e1)dx

≤ 1

2
‖u‖2 +

1

2
‖v‖2 +

λ1β
2
1

2
− b1

∫

Ω

(|u|α + |v|α + |β1e1|α)dx + C1

≤ 1

2
‖u‖2 +

1

2
‖v‖2 +

λ1β
2
1

2
− C2‖u‖α − C2‖v‖α − C3|β1|α + C4,
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for any (u, v, 0) ∈ H1⊕H2 and any constant β1. Since α > 2, I(u, v, β1e1) →
−∞ for ‖u‖ → ∞ or ‖v‖ → ∞ or |β1| → ∞. Therefore we can choose
0 < R1 < ∞ such that I(u, v, β1e1) < 0 for any ‖(u, v, β1e1)‖E = R1.

Lemma 4.3. Assume F satisfies (F3). If b + η < λ1 and c < λ1, then
there exists ρ2 > 0 such that

inf
∂Bρ2 (H2⊕H3)

I > 0.

Proof. By (F3), for any ε > 0, there exists ρ > 0 such that

0 < ‖v‖2 + ‖w‖2 < ρ2 ⇒ |F (x, 0, v, w)| < ε(|v|2 + |w|2).
Then | ∫

Ω
F (x, 0, v, w)dx| < ε

λ1
(‖v‖2 + ‖w‖2) and hence

I(0, v, w) =
1

2

∫

Ω

(|∇v|2 + |∇w|2)dx− b

2

∫

Ω

v2dx− η

2

∫

Ω

(v−)2dx

− c

2

∫

Ω

w2dx−
∫

Ω

F (x, 0, v, w)dx

>
1

2
(1− b + η + 2ε

λ1

)‖v‖2 +
1

2
(1− c + 2ε

λ1

)‖w‖2 > 0

which gives the result for sufficiently small ε. Therefore we can choose
0 < ρ2 < ρ such that I(0, v, w) > 0 for any ‖v‖2 + ‖w‖2 = ρ2

2.

Lemma 4.4. Assume F satisfies (F1). If a, b, c, δ, and η are positive,
then there exists an R > 0 such that for any R2 > R

sup
∂QR2

(H1,e2
1)

I < 0.

Proof. In the following we denote different constants by C1, C2 etc.
Remark implies that

I(u, β2e1, 0) =
1

2

∫

Ω

|∇u|2dx +
λ1β

2
2

2
− a

2

∫

Ω

u2dx− bβ2
2

2

−δ

2

∫

Ω

(u+)2dx−
∫

Ω

F (x, u, β2e1, 0)dx

≤ 1

2
‖u‖2 +

λ1β
2
2

2
−

∫

Ω

F (x, u, β2e1, 0)dx

≤ 1

2
‖u‖2 +

λ1β
2
2

2
− C1‖u‖α − C2|β2|α + C3,
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for any u ∈ H and any constant β2. Since α > 2, I(u, β2e1, 0) → −∞
for ‖u‖ → ∞ or |β2| → ∞. Therefore we can choose 0 < R2 < ∞ such
that I(u, β2e1, 0) < 0 for any ‖(u, β2e1, 0)‖E = R2.

Proof of Theorem. By Lemma 4.1 and 4.2, there exists 0 < ρ1 < R1

such that
sup

∂QR1
(H1⊕H2,e3

1)

I < 0 < inf
∂Bρ1 (H3)

I.

And by Lemma 4.3 and 4.4, there exists 0 < ρ2 < R2 < R1 such that

sup
∂QR2

(H1,e2
1)

I < 0 < inf
∂Bρ2 (H2⊕H3)

I.

By Theorem 1, I(u, v, w) has at least three nonzero critical values c1, c2, c3

inf
Bρ2 (H2⊕H3)

I ≤ c1 ≤ sup
∂QR2

(H1,e2
1)

I < inf
∂Bρ2 (H2⊕H3)

I ≤ c2 ≤ sup
QR2

(H1,e2
1)

I

≤ sup
∂QR1

(H1⊕H2,e3
1)

I < inf
∂Bρ1 (H3)

I ≤ c3 ≤ sup
QR1

(H1⊕H2,e3
1)

I.

Therefore, (1) has at least three nontrivial solutions.
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