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INFINITE FINITE RANGE INEQUALITIES

Haewon Joung

Abstract. Infinite finite range inequalities relate the norm of a
weighted polynomial over R to its norm over a finite interval. In
this paper we extend such inequalities to generalized polynomials
with the weight W (x) =

∏m
k=1 |x− xk|γk · exp(−|x|α).

1. Introduction

In the analysis of extremal polynomials, inequalities relating Lp norms
of weighted polynomials over infinite and finite intervals are important
because they reduce problems over an infinite interval to problems on a
finite interval. Freud, Nevai and others (see [11]) obtained inequalities
that sufficed for weighted Bernstein type theorems on R. Subsequently
Mhaskar and Saff [8] established sharper inequalities that led to nth root
asymptotics for Lp extremal polynomials. In resolving Freud’s conjec-
ture, Lubinsky, Mhaskar and Saff [7] further sharpened these inequalities.
In this paper we extend such inequalities to generalized polynomials with
the weight W (x) =

∏m
k=1 |x− xk|γk · exp(−|x|α).

A generalized nonnegative algebraic polynomial is a function of the
type

f(z) = |ω|
m∏

j=1

|z − zj|rj (0 6= ω ∈ C)

with rj ∈ R+, zj ∈ C, and the number

n
def
=

m∑
j=1

rj
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is called the generalized degree of f . Note that n > 0 is not necessarily
an integer.

We denote by GANPn the set of all generalized nonnegative algebraic
polynomials of degree at most n ∈ R+.

Using

|z − zj|rj = ((z − zj)(z − z̄j))
rj/2, z ∈ R,

we can easily check that when f ∈ GANPn is restricted to the real line,
then it can be written as

f =
m∏

j=1

P
rj/2
j , 0 ≤ Pj ∈ P2, rj ∈ R+,

m∑
j=1

rj ≤ n,

which is the product of nonnegative polynomials raised to positive real
powers. This explains the name generalized nonnegative polynomials.
Many properties of generalized nonnegative polynomials were investi-
gated in a series of papers ([1,2,3,4]).

Associated with the Freud weight Wα(x) = exp(−|x|α), α > 0, there
are Mhaskar-Rahmanov-Saff numbers an = an(α), which is the positive
solution of the equation

n =
2

π

∫ 1

0

antQ′(ant)(1− t2)−
1
2 dt, n ∈ R+,

where Q(x) = |x|α, α > 0. Explicitly,

an = an(α) =

(
n

λα

)1/α

, n ∈ R+,

where

λα =
22−αΓ(α)

{Γ(α/2)}2
.

Its importance lies partly in the identity [9]

‖PWα‖L∞(R) = ‖PWα‖L∞([−an,an]), P ∈ Pn.

Now we state our results.

Theorem 1.1. Let ε > 0, d > 0, and 0 < p < ∞. Let

W (x) =
m∏

k=1

|x− xk|γk · exp(−|x|α),
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where α > 1, xk ∈ R, and pγk > −1, for k = 1, · · · ,m. Let

sn = min

{
dan

n
, an

}
, ε ≤ n ∈ R+.

Then there exist positive constants B and C such that∫ ∞

−∞
fp(x)W p(x)dx ≤ C

∫

In\∆n

f p(x)W p(x)dx,

for all f ∈ GANPn, ε ≤ n ∈ R+, where

In = [−Ban, Ban]

and ∆n is any measurable subset of In with m(∆n) ≤ sn.

As a consequence of Theorem 1.1, we have the following.

Corollary 1.2. Let ε > 0 and 0 < p < ∞. Let

W (x) =
m∏

k=1

|x− xk|γk · exp(−|x|α),

where α > 1, xk ∈ R, and pγk > −1, for k = 1, · · · ,m. Then there exist
positive constants B and C such that

∫ ∞

−∞
f p(x)W p(x)dx ≤ C

∫ Ban

−Ban

f p(x)W p(x)dx,

for all f ∈ GANPn, ε ≤ n ∈ R+.

We can drop the condition pγk > −1 in Theorem 1.1 if we replace W
by Wn as follows.

Theorem 1.3. Let ε > 0, d > 0, and 0 < p ≤ ∞. Let

Wn(x) =
m∏

k=1

(
|x− xk|+ an

n

)γk · exp(−|x|α),

where n ∈ R+, α > 1, and xk, γk ∈ R, for k = 1, · · · ,m. Let

sn = min

{
dan

n
, an

}
, ε ≤ n ∈ R+.

Then there exist positive constants B and C such that

‖fWn‖Lp(R) ≤ C‖fWn‖Lp(In\∆n),

for all f ∈ GANPn, ε ≤ n ∈ R+, where

In = [−Ban, Ban]
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and ∆n is any measurable subset of In with m(∆n) ≤ sn.

Throughout this paper we write gn(x) ∼ hn(x) if for every n and for
every x in consideration

0 < c1 ≤ gn(x)

hn(x)
≤ c2 < ∞,

and g(x) ∼ h(x), n ∼ N have similar meanings.

2. Proof of theorems

In order to prove Theorems, first we need infinite finite range in-
equalities for generalized polynomials with the Freud weight Wα(x) =
exp(−|x|α). We restate Theorem 2.2 in [5. p. 124].

Lemma 2.1. Let ε > 0 and d > 0. Let Wα(x) = exp(−|x|α), α > 1.
Let

sn = min

{
dan

n
, an

}
, n ∈ R+.

If 0 < p < ∞, then there exist positive constants B∗ and C1 such that
for all measurable sets ∆n ⊂ [−B∗an, B

∗an] with m(∆n) ≤ sn/2,

(2.1)

∫ ∞

−∞
fp(x)W p

α(x)dx ≤ C1

∫
|x| ≤ B∗an

x /∈ ∆n

f p(x)W p
α(x)dx,

for all f ∈ GANPn, ε ≤ n ∈ R+.
If p = ∞, then there exists a positive constant C2 such that for all

measurable sets ∆n ⊂ [−B∗an, B∗an] with m(∆n) ≤ sn,

(2.2) ‖fWα‖L∞(R) ≤ C2‖fWα‖L∞([−B∗an,B∗an]\∆n),

for all f ∈ GANPn, n ∈ R+.

Proof. See the proof of Theorem 2.2 in [5. p. 124].

Next we define generalized Christoffel functions. Let 0 < p < ∞.
Then the generalized Christoffel function for ordinary polynomials is
defined by

λn,p(Wα; x) = min
P∈Pn−1

∫ ∞

−∞

|P (t)Wα(t)|p
|P (x)|p dt, x ∈ R, n ∈ N.
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The generalized Christoffel function for generalized nonnegative poly-
nomials is defined by

ωn,p(Wα; x) = inf
f∈GANPn

∫ ∞

−∞

(f(t)Wα(t))p

f p(x)
dt, x ∈ R, n ∈ R+.

For the estimates of ωn,p(Wα; x), we need the following lemma, which is
the restatement of Theorem 2.3 in [5, p. 125].

Lemma 2.2. Let Wα(x) = exp(−|x|α), α > 1. Let 0 < p < ∞. Then

ωn,p(Wα; x) ≥ C
an

n
W p

α(x), x ∈ R, n ∈ R+,

and

ωn,p(Wα; x) ≤ λ[n]+1,p(Wα; x), x ∈ R, n ∈ R+,

where [n] denotes the integer part of n.

Proof. See the proof of Theorem 2.3 in [5, p. 125].

Remark. It is well known (see, for example, [6]) that if α > 1, then
there exist positive constants C1 and C2 depending on p and α, such
that

λ[n]+1,p(Wα; x) ≤ C1
an

n
W p

α(x), |x| ≤ C2an.

Consequently

ωn,p(Wα; x) ∼ an

n
W p

α(x), |x| ≤ C2an.

Now we prove our results.
Proof of Theorem 1.1. Let ε > 0, d > 0, and 0 < p < ∞. Let

W (x) =
m∏

k=1

vk(x) · exp(−|x|α) (α > 1),

where

vk(x) = |x− xk|γk ,

and

γk < 0, for 1 ≤ k ≤ i,

0 ≤ γk < 1, for i < k ≤ j,

1 ≤ γk, for j < k ≤ m.
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Suppose that pγk > −1, k = 1, 2, · · · ,m. Let

(2.3) Γn = n + 4ni +
m∑

k=i+1

γk

Let B∗ be the constant which satisfies (2.1). Choose B > 0 big enough
so that

(2.4) B∗aΓn ≤ Ban, for n ≥ ε,

and

(2.5) |xk| < (Ban)/2, for k = 1, 2, · · · ,m, and n ≥ ε.

Let
In = [−Ban, Ban],

and let ∆n be any measurable subset of In with m(∆n) ≤ sn, where

sn = min

{
dan

n
, an

}
.

Let d1 > 0 and

An,k =

(
xk − d1an

n
, xk +

d1an

n

)
, k = 1, 2, · · · ,m, n ≥ ε,

and
Jn = ∪m

k=1An,k.

Here, we can find d1 > 0 so that An,k’s are self disjoint for k = 1, 2, · · · ,m,
and Jn ⊂ In and

(2.6) m(∆n ∪ Jn) ≤ min

{
(d + 1)an

n
, 2an

}
.

Now denote by Pj(α, β, x), (α > −1, β > −1), j = 0, 1, 2, · · · , the
orthonormalized Jacobi polynomials and let

KM(α, β, x) =
M−1∑
j=0

P 2
j (α, β, x).

Let

QM,k(x) =
1

M
KM

(
−1

2
,
γk − 1

2
, 2x2 − 1

)
, M ∈ N, 1 ≤ k ≤ j.

It is well known (see [10, Lemma 2, p. 241] and [12, p.108])that

|Q′
M,k(x)| ≤ c1|x|−1|1− x2|−1QM,k(x), for |x| ≤ 1,
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and

QM,k(x) ∼
(
|x|+ 1

M

)γk

, for |x| ≤ 1.

Now for each ε ≤ n ∈ R+, let N = [n] + 1 and

(2.7) Rn,k(x) = (4Ban)γkQN,k

(
x− xk

4Ban

)
, for k = 1, 2, · · · , j.

Then we have

(2.8) |R′
n,k(x)| ≤ c2

n

an

Rn,k(x), for x ∈ In \ An,k,

(2.9) Rn,k(x) ∼
(
|x− xk|+ an

n

)γk

, for x ∈ In,

and

(2.10) Rn,k(x) ∼ vk(x), for x ∈ In \ An,k.

Now let
Dn = ∆n \ Jn and Bn,k = An,k ∩∆n.

Let f ∈ GANPn, n ≥ ε. First we show that

(2.11)

∫

Dn

(fW )p(x)dx ≤ c3

∫

In\∆n

(fW )p(x)dx.

Since
Rn,k(x) ∼ vk(x), x ∈ Dn, 1 ≤ k ≤ i,

we have∫

Dn

(fW )p(x)dx ≤ c4

∫

Dn

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx.

Since (fRn,1 · · ·Rn,ivi+1 · · · vm) is a generalized polynomial of degree
less than Γn = O(n), by Lemma 2.1, (2.4), and (2.6), we obtain∫

Dn

(fW )p(x)dx

≤ c5

∫

In\(∆n∪Jn)

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c6

∫

In\(∆n∪Jn)

(fW )p(x)dx

≤ c6

∫

In\∆n

(fW )p(x).
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Next we show that

(2.12)

∫

Bn,k

(fW )p(x)dx ≤ c7

∫

In\∆n

(fW )p(x)dx, 1 ≤ k ≤ m.

We distinguish two cases.

Case 1. 1 ≤ k ≤ i, (γk < 0). Since (fRn,1 · · ·Rn,ivi+1 · · · vm) is a
generalized polynomial of degree less than Γn = O(n), by Lemma 2.2,
we have

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)

≤ c8
n

an

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(t)dt, for x ∈ R.(2.13)

Multiplying by vp
k(x) and then integrating both sides over x ∈ An,k, we

obtain

∫

x∈An,k

(vkfRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c9

(an

n

)pγk
∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx.

Since
(

n

an

)γk

Rn,k(x) ≥ c10, for x ∈ An,k, by (2.9),

and

Rn,`(x) ∼ v`(x), 1 ≤ ` ≤ i, ` 6= k, for x ∈ An,k, by (2.10),

we have

∫

x∈An,k

(fW )p(x)dx

≤ c11

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx.
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Then by Lemma 2.1, (2.4), and (2.6),

∫

x∈An,k

(fW )p(x)dx

≤ c11

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c12

∫

In\(∆n∪Jn)

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c13

∫

In\(∆n∪Jn)

(fW )p(x)dx.

Noting that

Bn,k ⊂ An,k and In \ (∆n ∪ Jn) ⊂ In \∆n,

we have

(2.14)

∫

x∈Bn,k

(fW )p(x)dx ≤ c13

∫

In\∆n

(fW )p(x)dx, 1 ≤ k ≤ i.

Case 2. i < k ≤ m, (γk ≥ 0). Integrating both sides of (2.13) over
x ∈ An,k, we obtain

∫

x∈An,k

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c14

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx.

Since

Rn,`(x) ∼ v`(x), 1 ≤ ` ≤ i, for x ∈ An,k, by (2.10),

we have
∫

x∈An,k

(fW )p(x)dx

≤ c15

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx.
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Then by Lemma 2.1, (2.4), and (2.5),∫

x∈An,k

(fW )p(x)dx

≤ c15

∫ ∞

−∞
(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c16

∫

In\(∆n∪Jn)

(fRn,1 · · ·Rn,ivi+1 · · · vmWα)p(x)dx

≤ c17

∫

In\(∆n∪Jn)

(fW )p(x)dx,

hence, ∫

x∈Bn,k

(fW )p(x)dx ≤ c17

∫

In\∆n

(fW )p(x)dx, i < k ≤ m.

Combining (2.11) and (2.12) yields

(2.15)

∫

∆n

(fW )p(x)dx ≤ c18

∫

In\∆n

(fW )p(x)dx.

Next we show

(2.16)

∫

|x|≥Ban

(fW )p(x)dx ≤ c19

∫

In\∆n

(fW )p(x)dx.

Let, for 1 ≤ k ≤ i,

Mn,k = max(|Ban + xk|pγk , |Ban − xk|pγk)

and
mn,k = min(|Ban + xk|pγk , |Ban − xk|pγk).

Then
Mn,k

mn,k

≤ C(k), by (2.5),

hence, ∫

|x|≥Ban

(fW )p(x)dx

≤ Mn,1 · · ·Mn,i

∫

|x|≥Ban

(fvi+1 · · · vmWα)p(x)dx

≤ Mn,1 · · ·Mn,i

∫ ∞

−∞
(fvi+1 · · · vmWα)p(x)dx,
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therefore, by Lemma 2.1,∫

|x|≥Ban

(fW )p(x)dx

≤ c20Mn,1 · · ·Mn,i

∫

In\∆n

(fvi+1 · · · vmWα)p(x)dx

≤ c20
Mn,1 · · ·Mn,i

mn,1 · · ·mn,i

∫

In\∆n

(fW )p(x)dx

≤ c21

∫

In\∆n

(fW )p(x)dx.

Then by (2.15) and (2.16), we have
∫ ∞

−∞
(fW )p(x)dx

=

∫

∆n

(fW )p(x)dx +

∫

In\∆n

(fW )p(x)dx +

∫

|x|≥Ban

(fW )p(x)dx

≤ c22

∫

In\∆n

(fW )p(x)dx,

hence, Theorem 1.1 is proved.

Proof of Corollary 1.2. Corollary 1.2 follows directly from Theorem
1.1.

Proof of Theorem 1.3. Let ε > 0, d > 0, and 0 < p ≤ ∞. For
simplicity we consider

Wn(x) =
2∏

k=1

(
|x− xk|+ an

n

)γk · exp(−|x|α),

where n ∈ R+, α > 1, and

γ1 < 0 and γ2 ≥ 0.

General case follows by the same method. Let

β(n) = 5n + γ2.

Let B∗ be the constant which satisfies (2.1). Choose B > 0 big enough
so that

(2.17) B∗aβn ≤ Ban, for n ≥ ε,
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and

(2.18) |xk| < (Ban)/2, for k = 1, 2, and n ≥ ε.

Let
In = [−Ban, Ban],

and let ∆n be any measurable subset of In with m(∆n) ≤ sn, where

sn = min

{
dan

n
, an

}
.

Let

vn,k(x) =
(
|x− xk|+ an

n

)γk

, k = 1, 2.

And let

un,1(x) =
∣∣∣x− x2 +

an

n

∣∣∣
γ2

and

un,2(x) =
∣∣∣x− x2 − an

n

∣∣∣
γ2

.

We use the polynomial Rn,1 which we constructed in the proof of The-
orem 1.1. See (2.7) and (2.9). Recall that Rn,1 has degree at most 4n
and

(2.19) Rn,1(x) ∼ vn,1(x), x ∈ In.

Note that
1

2

(∣∣∣x− x2 +
an

n

∣∣∣ +
∣∣∣x− x2 − an

n

∣∣∣
)

≤
(
|x− x2|+ an

n

)

≤
∣∣∣x− x2 +

an

n

∣∣∣ +
∣∣∣x− x2 − an

n

∣∣∣ , x ∈ R.

Then using

c1(p)(|a|+ |b|)p ≤ (|a|p + |b|p) ≤ c2(p)(|a|+ |b|)p, (0 < p < ∞),

we have

(2.20) vn,2(x) ∼ (un,1(x) + un,2(x)), x ∈ R.

Let f ∈ GANPn. Since (fRn,1un,1) has degree at most β(n) = O(n), by
Lemma 2.1 and (2.17), we have

||fRn,1un,1Wα||Lp(∆n) ≤ c1||fRn,1un,1Wα||Lp(In\∆n).

Since
Rn,1(x) ∼ vn,1(x), x ∈ In,
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and
un,1(x) ≤ vn,2(x), x ∈ R,

we have
||fRn,1un,1Wα||Lp(∆n) ≤ c2||fWn||Lp(In\∆n).

Similarly we obtain

||fRn,1un,2Wα||Lp(∆n) ≤ c2||fWn||Lp(In\∆n).

Then by (2.19) and (2.20),

||fWn||Lp(∆n) = ||fvn,1vn,2Wα||Lp(∆n)

≤ c3||fRn,1(un,1 + un,2)Wα||Lp(∆n)

≤ c4(||fRn,1un,1Wα||Lp(∆n)

+||fRn,1un,2Wα||Lp(∆n))

≤ c5||fWn||Lp(In\∆n).(2.21)

Next we show that

||fWn||Lp(R\In) ≤ c6||fWn||Lp(In\∆n).

Let

Mn = max
|x|≥Ban

{(
|x− x1|+ an

n

)γ1
}

and

mn = min
|x|≤Ban

{(
|x− x1|+ an

n

)γ1
}

.

Then by (2.18)
Mn

mn

≤ c7,

hence, by Lemma 2.1 we have

||fvn,1un,1Wα||Lp(R\In) ≤ Mn||fun,1Wα||Lp(R\In)

≤ Mn||fun,1Wα||Lp(R)

≤ c8Mn||fun,1Wα||Lp(In\∆n)

≤ c8
Mn

mn

||fvn,1un,1Wα||Lp(In\∆n)

≤ c9||fvn,1un,1Wα||Lp(In\∆n).

Since
un,1(x) ≤ vn,2(x), x ∈ R,

we obtain
||fvn,1un,1Wα||Lp(R\In) ≤ c9||fWn||Lp(In\∆n).
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Similarly we have

||fvn,1un,2Wα||Lp(R\In) ≤ c9||fWn||Lp(In\∆n).

Then by (2.20),

||fWn||Lp(R\In) = ||fvn,1vn,2Wα||Lp(R\In)

≤ c10||fvn,1(un,1 + un,2)Wα||Lp(R\In)

≤ c11(||fvn,1un,1Wα||Lp(R\In)

+||fvn,1un,2Wα||Lp(R\In))

≤ c12||fWn||Lp(In\∆n).

Combining (2.21) and the above inequality gives Theorem 1.3.
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