INFINITE FINITE RANGE INEQUALITIES

Haewon Joung

Abstract

Infinite finite range inequalities relate the norm of a weighted polynomial over \mathbb{R} to its norm over a finite interval. In this paper we extend such inequalities to generalized polynomials with the weight $W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)$.

1. Introduction

In the analysis of extremal polynomials, inequalities relating L_{p} norms of weighted polynomials over infinite and finite intervals are important because they reduce problems over an infinite interval to problems on a finite interval. Freud, Nevai and others (see [11]) obtained inequalities that sufficed for weighted Bernstein type theorems on \mathbb{R}. Subsequently Mhaskar and Saff [8] established sharper inequalities that led to nth root asymptotics for L_{p} extremal polynomials. In resolving Freud's conjecture, Lubinsky, Mhaskar and Saff [7] further sharpened these inequalities. In this paper we extend such inequalities to generalized polynomials with the weight $W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)$.

A generalized nonnegative algebraic polynomial is a function of the type

$$
f(z)=|\omega| \prod_{j=1}^{m}\left|z-z_{j}\right|^{r_{j}} \quad(0 \neq \omega \in \mathbb{C})
$$

with $r_{j} \in \mathbb{R}^{+}, z_{j} \in \mathbb{C}$, and the number

$$
n \stackrel{\text { def }}{=} \sum_{j=1}^{m} r_{j}
$$

Received January 10, 2010. Revised March 6, 2010. Accepted March 8, 2010. 2000 Mathematics Subject Classification: 41A17.
Key words and phrases: infinite finite range inequalities, weighted polynomials, generalized polynomials.
is called the generalized degree of f. Note that $n>0$ is not necessarily an integer.

We denote by GANP $_{n}$ the set of all generalized nonnegative algebraic polynomials of degree at most $n \in \mathbb{R}^{+}$.

Using

$$
\left|z-z_{j}\right|^{r_{j}}=\left(\left(z-z_{j}\right)\left(z-\bar{z}_{j}\right)\right)^{r_{j} / 2}, \quad z \in \mathbb{R},
$$

we can easily check that when $f \in \operatorname{GANP}_{n}$ is restricted to the real line, then it can be written as

$$
f=\prod_{j=1}^{m} P_{j}^{r_{j} / 2}, \quad 0 \leq P_{j} \in \mathbb{P}_{2}, \quad r_{j} \in \mathbb{R}^{+}, \quad \sum_{j=1}^{m} r_{j} \leq n
$$

which is the product of nonnegative polynomials raised to positive real powers. This explains the name generalized nonnegative polynomials. Many properties of generalized nonnegative polynomials were investigated in a series of papers ($[1,2,3,4]$).

Associated with the Freud weight $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>0$, there are Mhaskar-Rahmanov-Saff numbers $a_{n}=a_{n}(\alpha)$, which is the positive solution of the equation

$$
n=\frac{2}{\pi} \int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-\frac{1}{2}} d t, \quad n \in \mathbb{R}^{+}
$$

where $Q(x)=|x|^{\alpha}, \alpha>0$. Explicitly,

$$
a_{n}=a_{n}(\alpha)=\left(\frac{n}{\lambda_{\alpha}}\right)^{1 / \alpha}, \quad n \in \mathbb{R}^{+}
$$

where

$$
\lambda_{\alpha}=\frac{2^{2-\alpha} \Gamma(\alpha)}{\{\Gamma(\alpha / 2)\}^{2}} .
$$

Its importance lies partly in the identity [9]

$$
\left\|P W_{\alpha}\right\|_{L^{\infty}(\mathbb{R})}=\left\|P W_{\alpha}\right\|_{L^{\infty}\left(\left[-a_{n}, a_{n}\right]\right)}, \quad P \in \mathbb{P}_{n}
$$

Now we state our results.
Theorem 1.1. Let $\epsilon>0, d>0$, and $0<p<\infty$. Let

$$
W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)
$$

where $\alpha>1, x_{k} \in \mathbb{R}$, and $p \gamma_{k}>-1$, for $k=1, \cdots, m$. Let

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\}, \epsilon \leq n \in \mathbb{R}^{+}
$$

Then there exist positive constants B and C such that

$$
\int_{-\infty}^{\infty} f^{p}(x) W^{p}(x) d x \leq C \int_{I_{n} \backslash \Delta_{n}} f^{p}(x) W^{p}(x) d x
$$

for all $f \in \operatorname{GANP}_{n}, \epsilon \leq n \in \mathbb{R}^{+}$, where

$$
I_{n}=\left[-B a_{n}, B a_{n}\right]
$$

and Δ_{n} is any measurable subset of I_{n} with $m\left(\Delta_{n}\right) \leq s_{n}$.
As a consequence of Theorem 1.1, we have the following.
Corollary 1.2. Let $\epsilon>0$ and $0<p<\infty$. Let

$$
W(x)=\prod_{k=1}^{m}\left|x-x_{k}\right|^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)
$$

where $\alpha>1, x_{k} \in \mathbb{R}$, and $p \gamma_{k}>-1$, for $k=1, \cdots, m$. Then there exist positive constants B and C such that

$$
\int_{-\infty}^{\infty} f^{p}(x) W^{p}(x) d x \leq C \int_{-B a_{n}}^{B a_{n}} f^{p}(x) W^{p}(x) d x
$$

for all $f \in \operatorname{GANP}_{n}, \epsilon \leq n \in \mathbb{R}^{+}$.
We can drop the condition $p \gamma_{k}>-1$ in Theorem 1.1 if we replace W by W_{n} as follows.

Theorem 1.3. Let $\epsilon>0, d>0$, and $0<p \leq \infty$. Let

$$
W_{n}(x)=\prod_{k=1}^{m}\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right),
$$

where $n \in \mathbb{R}^{+}, \alpha>1$, and $x_{k}, \gamma_{k} \in \mathbb{R}$, for $k=1, \cdots, m$. Let

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\}, \epsilon \leq n \in \mathbb{R}^{+}
$$

Then there exist positive constants B and C such that

$$
\left\|f W_{n}\right\|_{L^{p}(\mathbb{R})} \leq C\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)}
$$

for all $f \in \operatorname{GANP}_{n}, \epsilon \leq n \in \mathbb{R}^{+}$, where

$$
I_{n}=\left[-B a_{n}, B a_{n}\right]
$$

and Δ_{n} is any measurable subset of I_{n} with $m\left(\Delta_{n}\right) \leq s_{n}$.
Throughout this paper we write $g_{n}(x) \sim h_{n}(x)$ if for every n and for every x in consideration

$$
0<c_{1} \leq \frac{g_{n}(x)}{h_{n}(x)} \leq c_{2}<\infty
$$

and $g(x) \sim h(x), n \sim N$ have similar meanings.

2. Proof of theorems

In order to prove Theorems, first we need infinite finite range inequalities for generalized polynomials with the Freud weight $W_{\alpha}(x)=$ $\exp \left(-|x|^{\alpha}\right)$. We restate Theorem 2.2 in [5. p. 124].

Lemma 2.1. Let $\epsilon>0$ and $d>0$. Let $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$. Let

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\}, \quad n \in \mathbb{R}^{+}
$$

If $0<p<\infty$, then there exist positive constants B^{*} and C_{1} such that for all measurable sets $\Delta_{n} \subset\left[-B^{*} a_{n}, B^{*} a_{n}\right]$ with $m\left(\Delta_{n}\right) \leq s_{n} / 2$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f^{p}(x) W_{\alpha}^{p}(x) d x \leq C_{1} \int|x| \leq B^{*} a_{n} f^{p}(x) W_{\alpha}^{p}(x) d x \tag{2.1}
\end{equation*}
$$

for all $f \in \mathrm{GANP}_{n}, \epsilon \leq n \in \mathbb{R}^{+}$.
If $p=\infty$, then there exists a positive constant C_{2} such that for all measurable sets $\Delta_{n} \subset\left[-B^{*} a_{n}, B^{*} a_{n}\right]$ with $m\left(\Delta_{n}\right) \leq s_{n}$,

$$
\begin{equation*}
\left\|f W_{\alpha}\right\|_{L^{\infty}(\mathbb{R})} \leq C_{2}\left\|f W_{\alpha}\right\|_{L^{\infty}\left(\left[-B^{*} a_{n}, B^{*} a_{n}\right] \backslash \Delta_{n}\right)}, \tag{2.2}
\end{equation*}
$$

for all $f \in \operatorname{GANP}_{n}, n \in \mathbb{R}^{+}$.
Proof. See the proof of Theorem 2.2 in [5. p. 124].
Next we define generalized Christoffel functions. Let $0<p<\infty$. Then the generalized Christoffel function for ordinary polynomials is defined by

$$
\lambda_{n, p}\left(W_{\alpha} ; x\right)=\min _{P \in \mathbb{P}_{n-1}} \int_{-\infty}^{\infty} \frac{\left|P(t) W_{\alpha}(t)\right|^{p}}{|P(x)|^{p}} d t, \quad x \in \mathbb{R}, \quad n \in \mathbb{N} .
$$

The generalized Christoffel function for generalized nonnegative polynomials is defined by

$$
\omega_{n, p}\left(W_{\alpha} ; x\right)=\inf _{f \in \mathrm{GANP}_{n}} \int_{-\infty}^{\infty} \frac{\left(f(t) W_{\alpha}(t)\right)^{p}}{f^{p}(x)} d t, \quad x \in \mathbb{R}, \quad n \in \mathbb{R}^{+}
$$

For the estimates of $\omega_{n, p}\left(W_{\alpha} ; x\right)$, we need the following lemma, which is the restatement of Theorem 2.3 in [5, p. 125].

Lemma 2.2. Let $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right), \alpha>1$. Let $0<p<\infty$. Then

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \geq C \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad x \in \mathbb{R}, \quad n \in \mathbb{R}^{+}
$$

and

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \leq \lambda_{[n]+1, p}\left(W_{\alpha} ; x\right), \quad x \in \mathbb{R}, \quad n \in \mathbb{R}^{+},
$$

where $[n]$ denotes the integer part of n.
Proof. See the proof of Theorem 2.3 in [5, p. 125].
Remark. It is well known (see, for example, [6]) that if $\alpha>1$, then there exist positive constants C_{1} and C_{2} depending on p and α, such that

$$
\lambda_{[n]+1, p}\left(W_{\alpha} ; x\right) \leq C_{1} \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad|x| \leq C_{2} a_{n} .
$$

Consequently

$$
\omega_{n, p}\left(W_{\alpha} ; x\right) \sim \frac{a_{n}}{n} W_{\alpha}^{p}(x), \quad|x| \leq C_{2} a_{n} .
$$

Now we prove our results.
Proof of Theorem 1.1. Let $\epsilon>0, d>0$, and $0<p<\infty$. Let

$$
W(x)=\prod_{k=1}^{m} v_{k}(x) \cdot \exp \left(-|x|^{\alpha}\right) \quad(\alpha>1)
$$

where

$$
v_{k}(x)=\left|x-x_{k}\right|^{\gamma_{k}},
$$

and

$$
\begin{aligned}
\gamma_{k}<0, & \text { for } \quad 1 \leq k \leq i \\
0 \leq \gamma_{k}<1, & \text { for } i<k \leq j \\
1 \leq \gamma_{k}, & \text { for } j<k \leq m
\end{aligned}
$$

Suppose that $p \gamma_{k}>-1, k=1,2, \cdots, m$. Let

$$
\begin{equation*}
\Gamma_{n}=n+4 n i+\sum_{k=i+1}^{m} \gamma_{k} \tag{2.3}
\end{equation*}
$$

Let B^{*} be the constant which satisfies (2.1). Choose $B>0$ big enough so that

$$
\begin{equation*}
B^{*} a_{\Gamma_{n}} \leq B a_{n}, \quad \text { for } n \geq \epsilon, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{k}\right|<\left(B a_{n}\right) / 2, \quad \text { for } k=1,2, \cdots, m, \text { and } n \geq \epsilon \tag{2.5}
\end{equation*}
$$

Let

$$
I_{n}=\left[-B a_{n}, B a_{n}\right],
$$

and let Δ_{n} be any measurable subset of I_{n} with $m\left(\Delta_{n}\right) \leq s_{n}$, where

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\} .
$$

Let $d_{1}>0$ and

$$
A_{n, k}=\left(x_{k}-\frac{d_{1} a_{n}}{n}, x_{k}+\frac{d_{1} a_{n}}{n}\right), \quad k=1,2, \cdots, m, \quad n \geq \epsilon
$$

and

$$
J_{n}=\cup_{k=1}^{m} A_{n, k} .
$$

Here, we can find $d_{1}>0$ so that $A_{n, k}$'s are self disjoint for $k=1,2, \cdots, m$, and $J_{n} \subset I_{n}$ and

$$
\begin{equation*}
m\left(\Delta_{n} \cup J_{n}\right) \leq \min \left\{\frac{(d+1) a_{n}}{n}, 2 a_{n}\right\} \tag{2.6}
\end{equation*}
$$

Now denote by $P_{j}(\alpha, \beta, x),(\alpha>-1, \beta>-1), j=0,1,2, \cdots$, the orthonormalized Jacobi polynomials and let

$$
K_{M}(\alpha, \beta, x)=\sum_{j=0}^{M-1} P_{j}^{2}(\alpha, \beta, x) .
$$

Let

$$
Q_{M, k}(x)=\frac{1}{M} K_{M}\left(-\frac{1}{2}, \frac{\gamma_{k}-1}{2}, 2 x^{2}-1\right), \quad M \in \mathbb{N}, \quad 1 \leq k \leq j
$$

It is well known (see [10, Lemma 2, p. 241] and [12, p.108])that

$$
\left|Q_{M, k}^{\prime}(x)\right| \leq c_{1}|x|^{-1}\left|1-x^{2}\right|^{-1} Q_{M, k}(x), \quad \text { for }|x| \leq 1,
$$

and

$$
Q_{M, k}(x) \sim\left(|x|+\frac{1}{M}\right)^{\gamma_{k}}, \quad \text { for }|x| \leq 1
$$

Now for each $\epsilon \leq n \in \mathbb{R}^{+}$, let $N=[n]+1$ and

$$
\begin{equation*}
R_{n, k}(x)=\left(4 B a_{n}\right)^{\gamma_{k}} Q_{N, k}\left(\frac{x-x_{k}}{4 B a_{n}}\right), \quad \text { for } k=1,2, \cdots, j . \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
\left|R_{n, k}^{\prime}(x)\right| \leq c_{2} \frac{n}{a_{n}} R_{n, k}(x), \quad \text { for } x \in I_{n} \backslash A_{n, k}, \tag{2.8}\\
R_{n, k}(x) \sim\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}}, \quad \text { for } x \in I_{n}, \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
R_{n, k}(x) \sim v_{k}(x), \quad \text { for } x \in I_{n} \backslash A_{n, k} . \tag{2.10}
\end{equation*}
$$

Now let

$$
D_{n}=\Delta_{n} \backslash J_{n} \text { and } B_{n, k}=A_{n, k} \cap \Delta_{n}
$$

Let $f \in \mathrm{GANP}_{n}, n \geq \epsilon$. First we show that

$$
\begin{equation*}
\int_{D_{n}}(f W)^{p}(x) d x \leq c_{3} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x . \tag{2.11}
\end{equation*}
$$

Since

$$
R_{n, k}(x) \sim v_{k}(x), \quad x \in D_{n}, \quad 1 \leq k \leq i
$$

we have

$$
\int_{D_{n}}(f W)^{p}(x) d x \leq c_{4} \int_{D_{n}}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x
$$

Since $\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m}\right)$ is a generalized polynomial of degree less than $\Gamma_{n}=\mathcal{O}(n)$, by Lemma 2.1, (2.4), and (2.6), we obtain

$$
\begin{aligned}
& \int_{D_{n}}(f W)^{p}(x) d x \\
& \leq c_{5} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \leq c_{6} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}(f W)^{p}(x) d x \\
& \leq c_{6} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) .
\end{aligned}
$$

Next we show that

$$
\begin{equation*}
\int_{B_{n, k}}(f W)^{p}(x) d x \leq c_{7} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x, \quad 1 \leq k \leq m . \tag{2.12}
\end{equation*}
$$

We distinguish two cases.
Case 1. $1 \leq k \leq i,\left(\gamma_{k}<0\right)$. Since $\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m}\right)$ is a generalized polynomial of degree less than $\Gamma_{n}=\mathcal{O}(n)$, by Lemma 2.2, we have

$$
\begin{align*}
& \left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) \\
& \quad \leq c_{8} \frac{n}{a_{n}} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(t) d t, \quad \text { for } x \in \mathbb{R} \tag{2.13}
\end{align*}
$$

Multiplying by $v_{k}^{p}(x)$ and then integrating both sides over $x \in A_{n, k}$, we obtain

$$
\begin{aligned}
& \int_{x \in A_{n, k}}\left(v_{k} f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \quad \leq c_{9}\left(\frac{a_{n}}{n}\right)^{p \gamma_{k}} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x .
\end{aligned}
$$

Since

$$
\left(\frac{n}{a_{n}}\right)^{\gamma_{k}} R_{n, k}(x) \geq c_{10}, \quad \text { for } x \in A_{n, k}, \quad \text { by }(2.9)
$$

and

$$
R_{n, \ell}(x) \sim v_{\ell}(x), 1 \leq \ell \leq i, \ell \neq k, \quad \text { for } x \in A_{n, k}, \quad \text { by }(2.10)
$$

we have

$$
\begin{aligned}
& \int_{x \in A_{n, k}}(f W)^{p}(x) d x \\
& \quad \leq c_{11} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x
\end{aligned}
$$

Then by Lemma 2.1, (2.4), and (2.6),

$$
\begin{aligned}
& \int_{x \in A_{n, k}}(f W)^{p}(x) d x \\
& \leq c_{11} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \leq c_{12} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \leq c_{13} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}(f W)^{p}(x) d x .
\end{aligned}
$$

Noting that

$$
B_{n, k} \subset A_{n, k} \text { and } I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right) \subset I_{n} \backslash \Delta_{n}
$$

we have

$$
\begin{equation*}
\int_{x \in B_{n, k}}(f W)^{p}(x) d x \leq c_{13} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x, \quad 1 \leq k \leq i \tag{2.14}
\end{equation*}
$$

Case 2. $i<k \leq m,\left(\gamma_{k} \geq 0\right)$. Integrating both sides of (2.13) over $x \in A_{n, k}$, we obtain

$$
\begin{aligned}
& \int_{x \in A_{n, k}}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \leq c_{14} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x
\end{aligned}
$$

Since

$$
R_{n, \ell}(x) \sim v_{\ell}(x), 1 \leq \ell \leq i, \quad \text { for } x \in A_{n, k}, \quad \text { by }(2.10)
$$

we have

$$
\begin{aligned}
& \int_{x \in A_{n, k}}(f W)^{p}(x) d x \\
& \quad \leq c_{15} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x
\end{aligned}
$$

Then by Lemma 2.1, (2.4), and (2.5),

$$
\begin{aligned}
\int_{x \in A_{n, k}} & (f W)^{p}(x) d x \\
& \leq c_{15} \int_{-\infty}^{\infty}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
\leq & c_{16} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}\left(f R_{n, 1} \cdots R_{n, i} v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
\leq & c_{17} \int_{I_{n} \backslash\left(\Delta_{n} \cup J_{n}\right)}(f W)^{p}(x) d x,
\end{aligned}
$$

hence,

$$
\int_{x \in B_{n, k}}(f W)^{p}(x) d x \leq c_{17} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x, \quad i<k \leq m
$$

Combining (2.11) and (2.12) yields

$$
\begin{equation*}
\int_{\Delta_{n}}(f W)^{p}(x) d x \leq c_{18} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x . \tag{2.15}
\end{equation*}
$$

Next we show

$$
\begin{equation*}
\int_{|x| \geq B a_{n}}(f W)^{p}(x) d x \leq c_{19} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x . \tag{2.16}
\end{equation*}
$$

Let, for $1 \leq k \leq i$,

$$
M_{n, k}=\max \left(\left|B a_{n}+x_{k}\right|^{p \gamma_{k}},\left|B a_{n}-x_{k}\right|^{p \gamma_{k}}\right)
$$

and

$$
m_{n, k}=\min \left(\left|B a_{n}+x_{k}\right|^{p \gamma_{k}},\left|B a_{n}-x_{k}\right|^{p \gamma_{k}}\right) .
$$

Then

$$
\frac{M_{n, k}}{m_{n, k}} \leq C(k), \quad \text { by }(2.5),
$$

hence,

$$
\begin{aligned}
& \int_{|x| \geq B a_{n}}(f W)^{p}(x) d x \\
& \quad \leq M_{n, 1} \cdots M_{n, i} \int_{|x| \geq B a_{n}}\left(f v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \quad \leq M_{n, 1} \cdots M_{n, i} \int_{-\infty}^{\infty}\left(f v_{i+1} \cdots v_{m} W_{\alpha}\right)^{p}(x) d x,
\end{aligned}
$$

therefore, by Lemma 2.1,

$$
\begin{aligned}
\int_{|x| \geq} & \left(f a_{n}\right. \\
& \leq c_{20} M_{n, 1} \cdots M_{n, i} \int_{I_{n} \backslash \Delta_{n}}(x) d x \\
& \leq c_{20} \frac{M_{n, 1} \cdots v_{n, i}}{m_{n, 1} \cdots m_{n, i}} \int_{I_{n} \backslash \Delta_{n}}\left(f W v_{m} W_{\alpha}\right)^{p}(x) d x \\
& \leq c_{21} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x
\end{aligned}
$$

Then by (2.15) and (2.16), we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}(f W)^{p}(x) d x \\
& \quad=\int_{\Delta_{n}}(f W)^{p}(x) d x+\int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x+\int_{|x| \geq B a_{n}}(f W)^{p}(x) d x \\
& \quad \leq c_{22} \int_{I_{n} \backslash \Delta_{n}}(f W)^{p}(x) d x,
\end{aligned}
$$

hence, Theorem 1.1 is proved.
Proof of Corollary 1.2. Corollary 1.2 follows directly from Theorem 1.1.

Proof of Theorem 1.3. Let $\epsilon>0, d>0$, and $0<p \leq \infty$. For simplicity we consider

$$
W_{n}(x)=\prod_{k=1}^{2}\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}} \cdot \exp \left(-|x|^{\alpha}\right)
$$

where $n \in \mathbb{R}^{+}, \alpha>1$, and

$$
\gamma_{1}<0 \text { and } \gamma_{2} \geq 0
$$

General case follows by the same method. Let

$$
\beta(n)=5 n+\gamma_{2} .
$$

Let B^{*} be the constant which satisfies (2.1). Choose $B>0$ big enough so that

$$
\begin{equation*}
B^{*} a_{\beta_{n}} \leq B a_{n}, \quad \text { for } n \geq \epsilon, \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{k}\right|<\left(B a_{n}\right) / 2, \quad \text { for } k=1,2, \text { and } n \geq \epsilon \tag{2.18}
\end{equation*}
$$

Let

$$
I_{n}=\left[-B a_{n}, B a_{n}\right],
$$

and let Δ_{n} be any measurable subset of I_{n} with $m\left(\Delta_{n}\right) \leq s_{n}$, where

$$
s_{n}=\min \left\{\frac{d a_{n}}{n}, a_{n}\right\}
$$

Let

$$
v_{n, k}(x)=\left(\left|x-x_{k}\right|+\frac{a_{n}}{n}\right)^{\gamma_{k}}, \quad k=1,2 .
$$

And let

$$
u_{n, 1}(x)=\left|x-x_{2}+\frac{a_{n}}{n}\right|^{\gamma_{2}}
$$

and

$$
u_{n, 2}(x)=\left|x-x_{2}-\frac{a_{n}}{n}\right|^{\gamma_{2}}
$$

We use the polynomial $R_{n, 1}$ which we constructed in the proof of Theorem 1.1. See (2.7) and (2.9). Recall that $R_{n, 1}$ has degree at most $4 n$ and

$$
\begin{equation*}
R_{n, 1}(x) \sim v_{n, 1}(x), \quad x \in I_{n} \tag{2.19}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \frac{1}{2}\left(\left|x-x_{2}+\frac{a_{n}}{n}\right|+\left|x-x_{2}-\frac{a_{n}}{n}\right|\right) \\
& \quad \leq\left(\left|x-x_{2}\right|+\frac{a_{n}}{n}\right) \\
& \quad \leq\left|x-x_{2}+\frac{a_{n}}{n}\right|+\left|x-x_{2}-\frac{a_{n}}{n}\right|, \quad x \in \mathbb{R}
\end{aligned}
$$

Then using

$$
c_{1}(p)(|a|+|b|)^{p} \leq\left(|a|^{p}+|b|^{p}\right) \leq c_{2}(p)(|a|+|b|)^{p}, \quad(0<p<\infty)
$$

we have

$$
\begin{equation*}
v_{n, 2}(x) \sim\left(u_{n, 1}(x)+u_{n, 2}(x)\right), \quad x \in \mathbb{R} \tag{2.20}
\end{equation*}
$$

Let $f \in \operatorname{GANP}_{n}$. Since $\left(f R_{n, 1} u_{n, 1}\right)$ has degree at most $\beta(n)=\mathcal{O}(n)$, by Lemma 2.1 and (2.17), we have

$$
\left\|f R_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)} \leq c_{1}\left\|f R_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)}
$$

Since

$$
R_{n, 1}(x) \sim v_{n, 1}(x), \quad x \in I_{n}
$$

and

$$
u_{n, 1}(x) \leq v_{n, 2}(x), \quad x \in \mathbb{R}
$$

we have

$$
\left\|f R_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)} \leq c_{2}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)}
$$

Similarly we obtain

$$
\left\|f R_{n, 1} u_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)} \leq c_{2}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)}
$$

Then by (2.19) and (2.20),

$$
\begin{align*}
\left\|f W_{n}\right\|_{L^{p}\left(\Delta_{n}\right)}= & \left\|f v_{n, 1} v_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)} \\
\leq & c_{3}\left\|f R_{n, 1}\left(u_{n, 1}+u_{n, 2}\right) W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)} \\
\leq & c_{4}\left(\left\|f R_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)}\right. \\
& \left.+\left\|f R_{n, 1} u_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\Delta_{n}\right)}\right) \\
\leq & c_{5}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} . \tag{2.21}
\end{align*}
$$

Next we show that

$$
\left\|f W_{n}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \leq c_{6}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} .
$$

Let

$$
M_{n}=\max _{|x| \geq B a_{n}}\left\{\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{\gamma_{1}}\right\}
$$

and

$$
m_{n}=\min _{|x| \leq B a_{n}}\left\{\left(\left|x-x_{1}\right|+\frac{a_{n}}{n}\right)^{\gamma_{1}}\right\} .
$$

Then by (2.18)

$$
\frac{M_{n}}{m_{n}} \leq c_{7}
$$

hence, by Lemma 2.1 we have

$$
\begin{aligned}
\left\|f v_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} & \leq M_{n}\left\|f u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \\
& \leq M_{n}\left\|f u_{n, 1} W_{\alpha}\right\|_{L^{p}(\mathbb{R})} \\
& \leq c_{8} M_{n}\left\|f u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} \\
& \leq c_{8} \frac{M_{n}}{m_{n}}\left\|f v_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} \\
& \leq c_{9}\left\|f v_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} .
\end{aligned}
$$

Since

$$
u_{n, 1}(x) \leq v_{n, 2}(x), \quad x \in \mathbb{R}
$$

we obtain

$$
\left\|f v_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \leq c_{9}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)}
$$

Similarly we have

$$
\left\|f v_{n, 1} u_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \leq c_{9}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} .
$$

Then by (2.20),

$$
\begin{aligned}
\left\|f W_{n}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)}= & \left\|f v_{n, 1} v_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \\
\leq & c_{10}\left\|f v_{n, 1}\left(u_{n, 1}+u_{n, 2}\right) W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)} \\
\leq & c_{11}\left(\left\|f v_{n, 1} u_{n, 1} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)}\right. \\
& \left.+\left\|f v_{n, 1} u_{n, 2} W_{\alpha}\right\|_{L^{p}\left(\mathbb{R} \backslash I_{n}\right)}\right) \\
\leq & c_{12}\left\|f W_{n}\right\|_{L^{p}\left(I_{n} \backslash \Delta_{n}\right)} .
\end{aligned}
$$

Combining (2.21) and the above inequality gives Theorem 1.3.

References

[1] T. Erdélyi, Bernstein and Markov type inequalities for generalized non-negative polynomials, Can. J. Math. 43 (1991), 495-505.
[2] T. Erdélyi, Remez-type inequalities on the size of generalized non-negative polynomials, J. London Math. Soc. 45 (1992), 255-264.
[3] T. Erdélyi, A. Máté, and P. Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), 241-255.
[4] T. Erdélyi and P. Nevai, Generalized Jacobi weights, Christoffel functions and zeros of orthogonal polynomials, J. Approx. Theory 69 (1992), 111-132.
[5] H. Joung, Estimates of Christoffel functions for generalized polynomils with exponential weights, Comm. Korean Math. Soc. 14 (1999), No. 1, 121-134.
[6] A.L. Levin and D.S. Lubinsky, Canonical products and the weights $\exp \left(-|x|^{\alpha}\right)$, $\alpha>1$, with applications, J. Approx. Theory 49 (1987), 149-169.
[7] D.S. Lubinsky, H.N. Mhaskar, and E.B. Saff, A proof of Freud's conjecture for exponential weights, Constr. Approx. 4 (1988), 65-83
[8] H.N. Mhaskar and E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
[9] H.N. Mhaskar and E.B. Saff, Where does the Sup Norm of a Weighted Polynomial Live?, Constr. Approx. 1 (1985), 71-91.
[10] P. Nevai, Bernstein's inequality in L_{p} for $0<p<1$, J. Approx. Theory. 27(1979), 239-243.
[11] P. Nevai, Geza Freud. Orthogonal Polynomials and Christoffel Functions. A Case Study, J. Approx. Theory. 48(1986), 3-167.
[12] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213, 1979.

Department of mathematics
Inha University
Incheon 402-751, Korea
E-mail: hwjoung@inha.ac.kr

