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A HOMOMORPHISM OF MINIMAL SETS AND ITS

REGULARIZER

H. S. Song

Abstract. In this paper we give some results on homomorphisms
of flows. In particular, we investigate the sufficient conditions for
the homomorphism of flows to be its own regularizer.

1. Introduction
The regular minimal sets were first studied by Auslander in [2].

These sets may be described as minimal subsets of enveloping semi-
groups. In [6], Shoenfeld introduced the regular homomorphisms which
are defined by extending regular minimal sets to homomorphisms with
minimal range.

Given a homomorphism π : X −→ Y with Y minimal, Shoenfeld
constructed the homomorphism π : N −→ Y the regularizer of π and
obtained the fact that the regular homomorphism of minimal sets is its
own regularizer.

The purpose of this paper is to give some results on homomorphisms
of flows and investigate the sufficient conditions for the homomorphism
of flows to be its own regularizer.

2. Preliminaries
A transformation group, or flow, (X,T ) , will consist of a jointly

continuous action of the topological group T on the compact Hausdorff
space X. The group T , with identity e, is assumed to be topologically
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discrete and remain fixed throughout this paper, so we may write X
instead of (X, T ).

A point transitive flow, (X, x) consists of a flow X with a distinguished
point x which has dense orbit. A flow is said to be minimal if every point
has dense orbit. Minimal flows are also referred to as minimal sets.

A homomorphism of flows is a continuous, equivariant map. A homo-
morphism whose domain is point transitive is determined by its value at
a single point.

We say that (X,T ) is an extension of (Y, T ) if there exists a homo-
morphism of X onto Y .

A homomorphism π : X −→ Y is said to be proximal if whenever
x1, x2 ∈ π−1(y) then x1 and x2 are proximal. A homomorphism π :
X −→ Y is said to be distal if whenever x1, x2 ∈ π−1(y) then x1 and x2

are distal. We say the homomorphism π : X −→ Y is almost one to one
if there exists a point y0 ∈ Y such that π−1(y0) is a singleton.

Given a flow (X, T ), we may regard T as a set of self-homeomorphisms
of X. We define E(X), the enveloping semigroup of X to be the closure
of T in XX , taken with the product topology. E(X) is at once a flow and
a sub-semigroup of XX . The minimal right ideals of E(X), considered
as a semigroup, coincide with the minimal sets of E(X).

If E is some enveloping semigroup, and there exists a homomorphism
θ : (E, e) −→ (E(X), e) we say that E is an enveloping semigroup for
X. If such a homomorphism exists, it must be unique, and, given x ∈ X
and p ∈ E we may write xp to mean xθ(p) unambiguously.

Lemma 2.1. ([6]) If (X, x) and (Y, y) are point transitive flows, and
E is an enveloping semigroup for X and Y , there exists a (unique)
homomorphism ψ : (X, x) −→ (Y, y) if and only if xp = xq for p, q ∈ E
implies yp = yq.

Lemma 2.2. ([3]) Let π : (X, T ) −→ (Y, T ) be an epimorphism(onto
homomorphism). Then there exists a unique epimorphism ψ : E(X) −→
E(Y ) such that π(x)ψ(p) = π(xp) for all p ∈ E(X).

Auslander and Glasner proved the following lemma :

Lemma 2.3. ([1]. [5]).

(1) A distal extension of a distal flow is distal.
(2) A distal extension of a minimal flow is a disjoint union of minimal

sets.
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(3) A proximal extension of a minimal flow contains a unique minimal
set.

Lemma 2.4. The following are true :

(1) A distal extension of a pointwise almost periodic flow is pointwise
almost periodic.

(2) A proximal extension of a proximal flow is proximal .
(3) If the proximal extension of a minimal flow is pointwise almost

periodic, then it is minimal.

Proof. (1) Let π : (X, T ) −→ (Y, T ) be a distal epimorphism and x ∈
X. By Lemma 2.2 we can find the unique epimorphism ψ : E(X) −→
E(Y ) such that π(xp) = π(x)ψ(p) for all p ∈ E(X). Since π(x) is
an almost periodic point, there exists an idempotent v ∈ E(Y ) with
π(x)v = π(x). Then there exists an idempotent u ∈ E(X) with ψ(u) = v
such that π(xu) = π(x). This implies that x and xu are distal. Clearly
they are also proximal and hence xu = x. Thus x is an almost periodic
point of (X,T ).

(2) Let π : (X, T ) −→ (Y, T ) be a proximal epimorphism and let
x1, x2 ∈ X. Since (Y, T ) is proximal, there exists q ∈ E(Y ) with
π(x1)q = π(x2)q whence π(x1p) = π(x2p). But since π is proximal,
there exists r ∈ E(X) with (x1p)r = (x2p)r. Also, x1(pr) = x2(pr)
shows that x1 and x2 are proximal.

(3) Let π : (X, T ) −→ (Y, T ) be a proximal homomorphism, Y min-
imal, and X pointwise almost periodic. Since every point of X is an
almost periodic point, it follows that {xT | x ∈ X} is a partition of X
consisting of minimal sets. The fact that X is minimal follows from (3)
of Lemma 2.3.

Remark 2.5. Let Y be a minimal set and π : (X, T ) −→ (Y, T ) a
proximal and distal homomorphism. Then X is a minimal set. This
follows from Lemma 2.3. Indeed π is an isomorphism since π whose
range is minimal is always onto.

3. Some results on homomorphisms and related regularizers
Let π : X −→ Y be a fixed epimorphism with Y pointwise almost

periodic and let y ∈ Y .
Then Xπ−1(y) is a flow whose elements are functions from π−1(y) to

X.
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Definition 3.1. ([6]) Define zy ∈ Xπ−1(y) by zy(x) = x for all x ∈
π−1(y). Let E(π, y) be the orbit closure of zy, i.e., E(π, y) = zyT ⊂
Xπ−1(y).

Remark 3.2. (1) If Y is a singleton {y}, then E(π, y) = E(X).
(2) For each y ∈ Y , E(X) is an enveloping semigroup for E(π, y).

Definition 3.3. ([6]) Let πy : E(π, y) −→ yT be the unique homo-
morphism with πy(zy) = y.

Lemma 3.4. ([6]) Let y ∈ Y and let N and N ′ be minimal subsets
of E(π, y). Then there is an isomorphism ϕ : N −→ N ′ such that
(πy|N ′)◦ϕ = πy|N .

The next lemmas follow easily from Theorem 2.1.5 and Theorem 2.1.6
in [6].

Lemma 3.5. Let y ∈ Y and y′ ∈ yT . Then there exist minimal sets
N ⊂ E(π, y), N ′ ⊂ E(π, y′), and an isomorphism ψ : N −→ N ′ such
that (πy′|N ′)◦ψ = πy|N .

Lemma 3.6. Let y ∈ Y , y′ ∈ yT , and N and N ′ minimal subsets
of E(π, y) and E(π, y′) respectively. Then there exists an isomorphism
ψ : N −→ N ′ such that (πy′|N ′)◦ψ = πy|N .

Theorem 3.7. (Shoenfeld [6])
Let Y be a minimal set and y, y′ ∈ Y . Suppose N and N ′ are min-

imal subsets of E(π, y) and E(π, y′) respectively. Then there exists an
isomorphism ψ : N −→ N ′ such that (πy′|N ′)◦ψ = πy|N .

Remark 3.8. Theorem 3.7 defines a minimal set N and an essentially
(up to isomorphism) unique homomorphism which we call π : N −→ Y .

Definition 3.9. ([6]) Given a homomorphism π : X −→ Y with Y
minimal, we call the homomorphism π : N −→ Y the regularizer of π
which is denoted by Reg(π).

Lemma 3.10. ([6]) Given a homomorphism π : X −→ Y with X and
Y minimal, the following are equivalent :

(1) For any two points x, x′ ∈ X with π(x) = π(x′) there exists a
homomorphism θ : X −→ X such that θ(x) and x′ are proximal
and π◦θ = π.



A homomorphism of minimal sets and its regularizer 83

(2) π is its own regularizer, i.e., Reg(π) = π.

Lemma 3.11. An almost one to one extension of a proximal and min-
imal flow is proximal.

Proof. Let π : (X, T ) −→ (Y, T ) be an almost one to one epimor-
phism, (Y, T ) minimal and proximal, and x1, x2 ∈ X. Then there exists
y0 ∈ Y such that π−1({y0}) = {x0}. Since Y is proximal we can find
q ∈ E(Y ) with π(x1)q = π(x2)q. But since Y is minimal there exists
r ∈ E(Y ) such that y0 = (π(x1)q)r = π(x1)(qr). Also there exists
p ∈ E(X) such that ψ(p) = qr, where ψ : E(X) −→ E(Y ) is the unique
epimorphism induced by π. Now π(x1p) = π(x1)ψ(p) = π(x1)qr =
π(x2)qr = π(x2)ψ(p) = π(x2p) and thus x1p = x2p. This shows that X
is proximal.

Let βT denote the Stone-Cěch compactification of T and let I be a
minimal right ideal in βT . Then (βT, e) is a universal point transitive
flow and (I, T ) is a universal minimal set. It is also clear that βT is an
enveloping semigroup for X, whenever X is a flow with acting group T .

We choose a distinguished idempotent u ∈ I, and denote by G the
group Iu. Given a minimal flow X, we choose a point x0 ∈ Xu. Under
the canonical map (βT, e) −→ (X, x0), I is mapped onto X and u onto
x0.

Let (X, x0) be a pointed minimal flow. We define the Ellis group of
(X, x0) to be

G(X, x0) = {α ∈ G | x0α = x0}.
Clearly G(X, x0) is a subgroup of G.

Lemma 3.12. ([5]) Let π : (X, x0) −→ (Y, y0) be a homomorphism of
pointed minimal flows. The following are true :

(1) G(X, x0) ⊂ G(Y, y0).
(2) G(X, x0) = G(Y, y0) if and only if π is proximal.

Theorem 3.13. Let Y be a minimal set and π : (X, T ) −→ (Y, T ) a
proximal homomorphism. If X is pointwise almost periodic, then it is
minimal and Reg(π) = π.

Proof. The fact that X is minimal follows from (3) of Lemma 2.4. If
we take θ by the identity homomorphism, we have from Lemma 3.10
that Reg(π) = π.
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Remark 3.14. Let Y be a minimal set and π : (X, T ) −→ (Y, T )
a proximal and distal homomorphism. It follows immediately from Re-
mark 2.5 and Lemma 3.10 that Reg(π) = π.

Theorem 3.15. Suppose that π : (X, T ) −→ (Y, T ) is a proximal and
almost one to one homomorphism and that Y is minimal. The following
are true :

(1) There is only one minimal subset M in X.
(2) Let y0 ∈ Y with π−1({y0}) = {x0}. Then x0 ∈ M .
(3) Let I be a minimal right ideal in βT and u ∈ I the distinguished

idempotent with y0u = y0. Then G(M, x0) = G(Y, y0).
(4) Reg(π|M) = π|M .

Proof. (1) This follows from (3) of Lemma 2.3.
(2) Since π(M) is closed, non-vacuous and invariant, it follows that

π(M) = Y . Also π−1({y0}) = {x0}. This shows that x0 ∈ M .
(3) Since Y is minimal, we have the distinguished idempotent u ∈

I with y0u = y0. Then π(x0u) = π(x0)u = y0u = y0. Since
π−1({y0}) = {x0} this implies that x0u = x0 whence u ∈ G(M, x0).
Thus we have G(M, x0) = G(Y, y0) by (2) of Lemma 3.12 and the
proximality of π.

(4) This follows from Lemma 3.10.

Theorem 3.16. Suppose that π : (X,T ) −→ (Y, T ) is an almost
one to one homomorphism and that Y is proximal and minimal. The
following are true :

(1) X is proximal.
(2) There is only one minimal subset M in X.
(3) Let y0 ∈ Y with π−1({y0}) = {x0}. Then x0 ∈ M .
(4) Given x ∈ X, there exists p ∈ E(X) such that xp ∈ M .
(5) Let y0 ∈ Y with π−1({y0}) = {x0}. Then x0 is contained the orbit

closure of x for all x ∈ X.
(6) Let I be a minimal right ideal in βT and u ∈ I the distinguished

idempotent with y0u = y0. Then G(M, x0) = G(Y, y0).
(7) Reg(π|M) = π|M .

Proof. (1) This follows from Lemma 3.11.
(2) This follows from (3) of Lemma 2.3 and the fact that if X is prox-

imal, then π is also proximal.
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(4) Since (X, T ) is proximal and M is minimal, there exists p ∈ E(X)
such that xp = x0p ∈ M .

(5) Let x ∈ X. Then as in (4) there exists p ∈ E(X) such that
xp ∈ M . Since x0 ∈ M and M is minimal, it follows that x0 =
(xp)r = x(pr) ∈ xT for some r ∈ E(X).

The proof of the statements (3), (6) and (7) is identical to that of
Theorem 3.15.

Theorem 3.17. Suppose that π : (X, T ) −→ (Y, T ) is a distal and
almost one to one homomorphism and that Y is proximal and minimal.
The following are true :

(1) X is proximal and minimal.
(2) Let y0 ∈ Y with π−1({y0}) = {x0}. Then G(X, x0) = G(Y, y0).
(3) Reg(π) = π.

Proof. (1) Lemma 3.11 shows that (X,T ) is proximal. Also, (2) of
Lemma 2.3 shows that (X, T ) is pointwise almost periodic. Since X is
proximal this implies that π is proximal whence X is minimal by (3) of
Lemma 2.4.

The proof of the statements (2) and (3) is completely analogous to
that of Theorem 3.15.

Theorem 3.18. Suppose that π : (X, T ) −→ (Y, T ) is a distal and
almost one to one homomorphism and that Y is distal and minimal. The
following are true :

(1) X is distal.
(2) X is a disjoint union of minimal sets.
(3) Let y0 ∈ Y with π−1({y0}) = {x0}, I a minimal right ideal in

βT , and u ∈ I the distinguished idempotent with y0u = y0. Then
x0u = x0.

(4) Let M be a minimal set with x0 ∈ M . Then π|M : (M, x0) −→
(Y, y0) is a unique epimorphism.

(5) G(M,x0) ⊂ G(Y, y0).

Proof. (1) This follows from (1) of Lemma 2.3.
(2) This follows from (2) of Lemma 2.3.
(3) Let y ∈ Y with π−1({y0}) = {x0} and let I be a minimal right

ideal in βT . Since Y is minimal, there exists the distinguished
idempotent u ∈ I with y0u = y0. Now π(x0u) = π(x0)u = y0u =
y0. Hence x0u = x0.
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(4) Let M be a minimal set with x0 ∈ M and let y ∈ Y . Then, by
the minimality of Y , there exists p ∈ βT with y = y0p = π(x0p).
Since X is minimal, it follows that x0p ∈ M . This implies that
Y = π(M) whence π|M : (M, x0) −→ (Y, y0) is an epimorphism.
The uniqueness of π follows immediately from Lemma 2.1 and the
fact that π−1({y0}) = {x0}.

(5) This follows from (1) of Lemma 3.12 and the above statements (3)
and (4).
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