Korean J. Math. 18 (2010), No. 1, pp. 97–103

THE STRUCTURE OF THE RADICAL OF THE NON SEMISIMPLE GROUP RINGS

WON SOK YOO

ABSTRACT. It is well known that the group ring K[G] has the nontrivial Jacobson radical if K is a field of characteristic p and G is a finite group of which order is divided by a prime p. This paper is concerned with the structure of the Jacobson radical of such a group ring.

1. Introduction

By Maschke's theorem [4], the group ring K[G] of a finite group G over a field K is semisimple if and only if K is of characteristic 0 or the characteristic of K is p and G is a finite group of which order is not divided by p, where p is a prime. Thus, if K is a field of characteristic p and the order of a group G is divided by p, then the Jacobson radical of the group ring K[G] contains a non-zero element. The purpose of this paper is to determine the structure of the Jacobson radical of such a group ring. The following is the main theorem.

THEOREM. Let G be a group of order $p^a b$ and (p, b) = 1 and let K be a field of characteristic p. Assume that G has a normal Sylow p-subgroup H. Then $JK[G] = \sum_{x \in H-\{1\}} K[G](x-1)$ and $\dim_K JK[G] = b(p^a - 1)$, where JK[G] is the Jacobson radical of the group ring K[G].

2. Preliminaries

Let R denote a ring, and let \circ be a binary operation on R defined by $a \circ b = a + b - ab$. An element a of R is said to be right quasi-

Received February 14, 2010. Revised March 7, 2010. Accepted March 10, 2010. 2000 Mathematics Subject Classification: 16N20.

Key words and phrases: Jacobson radical, group rings.

This research was supported by Kumoh National Institute of Technology in 2009.

Won Sok Yoo

regular if there exists an element b of R such that $a \circ b = 0$. A right ideal of R is said to be right quasi-regular if each of its elements is right quasi-regular. The Jacobson radical J(R) is the set of all element a of R such that aR is right quasi-regular. If $J(R) = \{0\}$ then R is called a semisimple ring.

PROPOSITION 2.1. ([5]) Let R be a ring. The Jacobson radical J(R) of R contains every nil right (or left) ideals of R.

PROPOSITION 2.2. Let R and S be rings. If $f : R \to S$ is a ring epimorphism then $f(J(R)) \subseteq J(S)$.

Proof. Let $a \in J(R)$ and $s \in S$. Then there exists $r \in R$ such that s = f(r). On the other hand, $ar \circ b = 0$ for some $b \in R$ since $ar \in aR$ and aR is right quasi-regular. Hence

 $f(a)s \circ f(b) = f(a)f(r) \circ f(b) = f(ar \circ b) = f(0) = 0,$

and so f(a)s is right quasi-regular. Because s is an arbitrary element of S, f(a)S is right quasi-regular. Thus $f(J(R)) \subseteq J(S)$. \Box

A ring R is said to be right [resp. left] Artinian if any non empty set of right [resp. left] ideals of R has a minimal element. R is said to be Artinian if R is both right and left Artinian.

In the Artinian case, the following propositions are hold.

PROPOSITION 2.3. ([1]) Let R be an Artinian ring. Then R is semisimple if and only if every submodule of R_R is a direct summand, where R_R is a right R-module R.

PROPOSITION 2.4. ([2]) Let R be an Artinian ring. Then (1) J(R) is a nilpotent ideal of R. (2) Any nil right (or left) ideal of R is nilpotent.

3. The structure of the Jacobson radical of group rings

Let K be a field and let G be a multiplicative group. Then the group ring K[G] is an associative K-algebra with the elements of G as a basis and with addition and multiplication defined by

$$\alpha + \beta = \sum_{g \in G} (a_g + b_g)g, \quad \alpha \beta = \sum_{g,h \in G} a_g b_h gh,$$

98

respectively, where $\alpha = \sum_{g \in G} a_g g$ and $\beta = \sum_{h \in G} b_h h$ $(a_g, b_h \in K, g, h \in G)$ are elements of K[G].

From now on, assume that K is a field of characteristic p and G is a finite group of which order is divided by p, where p is a prime. Then the Jacobson radical JK[G] of group ring K[G] is non-trivial by Maschke's theorem [4]. In fact, the following theorem holds.

THEOREM 3.1. Let G be a finite group and K be a field of characteristic p. If the order of G is divided by p, then

$$K[G]\alpha \subseteq JK[G], \quad 1 \le \dim_K JK[G] \le |G| - 1,$$

where $\alpha = \sum_{g \in G} g$.

Proof. Let |G| = n. Then $\alpha \neq 0$ and $\alpha g = \alpha = g\alpha$ for all $g \in G$. Hence α is a non-zero central element of K[G] and

$$\alpha^2 = \left(\sum_{g \in G} g\right)\alpha = n\alpha = 0,$$

so that $K[G]\alpha = \alpha K[G]$ is a non-trivial nil ideal of K[G]. Thus, by Proposition 2.1, $K[G]\alpha \subseteq JK[G]$.

Moreover, since $K[G] = \bigoplus_{g \in G} Kg$ and $g\alpha = \alpha$ for all $g \in G$, we have

$$K[G]\alpha = \bigoplus_{q \in G} Kg\alpha = K\alpha.$$

Thus $\dim_K K[G]\alpha = 1$, and so $1 \leq \dim_K JK[G] \leq |G| - 1$.

Let $\rho: K[G] \to K$ be the K-algebra homomorphism defined by $\rho(\sum_{g \in G} a_g g) = \sum_{g \in G} a_g$. The kernel

$$\omega(K[G]) = \left\{ \sum_{g \in G} a_g g \in K[G] \mid \sum_{g \in G} a_g = 0 \right\}$$

of ρ is called the augmentation ideal of K[G]. Since ρ is a Kalgebra epimorphism, $K[G]/\omega(K[G])$ is isomorphic to K as a Kalgebra and so $\dim_K \omega(K[G]) = |G| - 1$. In fact $\omega(K[G])$ has a K-basis $\{x - 1 \mid x \in G, x \neq 1\}$. Thus

$$\omega(K[G]) = \bigoplus_{x \in G - \{1\}} K(x - 1).$$

More generally, suppose H is a normal subgroup of a group G. Then the map $\rho_H : K[G] \to K[G/H]$ defined by

$$p_H(\sum_{g\in G} a_g g) = \sum_{g\in G} a_g \bar{g},$$

where $\bar{g} = gH$ in G/H, is a K-algebra homomorphism and it is easy to show that

Won Sok Yoo

$$\ker \rho_H = K[G]\omega(K[G]).$$

In the following theorem, we explicitly determine the structure of the Jacobson radical of the group ring concerned with a finite p-group, and this result will be generalized in Theorem 3.5.

THEOREM 3.2. Let G be a finite p-group with $|G| = p^a$, where $a \ge 1$, and let K be a field of characteristic p. Then

$$JK[G] = \omega(K[G]) = \sum_{x \in G - \{1\}} K(x - 1), \quad dim_K JK[G] = p^a - 1.$$

Proof. Since $K[G]/\omega(K[G])$ is isomorphic to K as a K-algebra, the augmentation ideal $\omega(K[G])$ is maximal in K[G]. Hence $JK[G] \subseteq \omega(K[G])$.

To prove the reverse inclusion $\omega(K[G]) \subseteq JK[G]$, by Proposition 2.1, it suffices to show that $\omega(K[G])$ is a nil ideal of K[G]. We will prove this by induction on a.

If |G| = p then it is easy to show that $\omega(K[G])^p = 0$, and so $\omega(K[G])$ is a nil ideal of K[G].

Assume that the assertion holds for a group of order p^a , and let G be a p-group with $|G| = p^{a+1}$. Now let H be the subgroup of G with |H| = p which is contained in the center of G, and let $\rho_H: K[G] \to K[G/H]$ be the K-algebra homomorphism defined by

$$\rho_H(\sum_{g\in G} a_g g) = \sum_{g\in G} a_g \bar{g}.$$

Then, $\rho_H(\omega(K[G])) \subseteq \omega(K[G/H])$ and $\omega(K[G/H])$ is a nil ideal of K[G/H] by inductive hypothesis.

Suppose that α is any element of $\omega(K[G])$. Then $\rho_H(a^m) = \rho_H(\alpha)^m = 0$ for some m > 0 since $\omega(K[G])$ is a nil ideal, which implies that α^m is contained in the kernel $K[G]\omega(K[H])$ of ρ_H . Since $\omega(K[G])$ is nilpotent by the above and since it is naturally central in K[G], we see that $K[G]\omega(K[H])$ is a nil ideal, so that α is a nilpotent element. Thus $\omega(K[G])$ is a nil ideal, the former insistence follows.

Clearly,

$$\omega(K[G]) = \sum_{x \in G - \{1\}} K(x-1),$$

$$\dim_K JK[G] = \dim_K \omega(K[G]) = p^a - 1.$$

The following two lemmas are crucial tools for the proof of our main theorem.

100

LEMMA 3.3. Let G be a finite group which contains normal Sylow p-subgroup H and let K be a field of characteristic p. Then

$$K[G]JK[H] = JK[H]K[G]$$

and thus K[G]JK[H] is a nilpotent ideal of K[G].

Proof. Certainly, JK[H]K[G] is closed under left multiplication by K. Thus we will show that it is closed under left multiplication by G. But if $g \in G$, then $qJK[H]K[G] = qJK[H]q^{-1}qK[G] =$

 $g\omega(K[G])g^{-1}gK[G]$

 $\subseteq \omega(K[H])gK[G] = JK[H]K[G]$ since $JK[H] = \omega(K[H])$ by Theorem 3.2 and since H is normal in g. Thus we have $K[G]JK[H] \subseteq$ JK[H]K[G]. By symmetry, the reverse inclusion also holds. Hence K[G]JK[H] = JK[H]K[G] and it is an ideal of K[G]. Furthermore, since JK[H] is nilpotent by Proposition 2.4(1), it follows that K[G]JK[H] is nilpotent.

LEMMA 3.4. Let G be a group with $|G| = p^a b$ and (p, b) = 1and let K be a field of characteristic p. If G has a normal Sylow p-subgroup H, then K[G/H] is a semisimple ring.

Proof. By Proposition 2.3, it is sufficient to prove that if $M \neq \{0\}$ is a right ideal of K[G/H] then $K[G/H] = M \oplus N$ as a K[G/H]module for some right ideal N of K[G/H].

Since M is a K-subspace of K[G/H] and since $\dim_K M < \infty$, there exists a K-subspace N of K[G/H] such that $K[G/H] = M \oplus N$ as a K-space. Thus, there is, of course, the canonical projection μ of K[G/H] onto M, which is a K-homomorphism.

Define $\mu^* : K[G/H] \longrightarrow K[G/H]$ by

$$\mu^*(\alpha) = \frac{1}{b} \sum_{\bar{x} \in G/H} \mu(\alpha \cdot \bar{x}) \cdot \bar{x}^{-1},$$

where $\bar{x} = xH$ in G/H, which is meaningful since (p, b) = 1. Then, clearly, μ^* is a K-homomorphism. Moreover, for any $\bar{y} \in G/H$, $\alpha \in$

$$K[G/H], \qquad \mu^*(\alpha \cdot \bar{y}) = \frac{1}{b} \sum_{\bar{x} \in G/H} \mu((\alpha \cdot \bar{y}) \cdot \bar{x}) \cdot \bar{x}^{-1}$$
$$= \frac{1}{b} \sum_{\bar{x} \in G/H} \mu(\alpha \cdot (\bar{y}\bar{x})) \cdot (\bar{y}\bar{x})^{-1} \bar{y}$$
$$= \left\{ \frac{1}{b} \sum_{\bar{y}\bar{x} \in \bar{y}(G/H) = G/H} \mu(\alpha \cdot (\bar{y}\bar{x})) \cdot (\bar{y}\bar{x})^{-1} \right\} \cdot \bar{y}$$

Won Sok Yoo

 $= \mu^*(\alpha) \cdot \overline{y}$, which shows that μ^* is a K[G/H]-module homomorphism.

Now, suppose that $\alpha \in M$. Then $\alpha \cdot \bar{x} \in M$ for all $\bar{x} \in G/H$ since M is a right ideal of K[G/H]. This yields

$$\mu^*(\alpha) = \frac{1}{b} \sum_{\bar{x} \in G/H} \mu(\alpha \cdot \bar{x}) \cdot \bar{x}^{-1}$$
$$= \frac{1}{b} \sum_{\bar{x} \in G/H} (\alpha \cdot \bar{x}) \cdot \bar{x}^{-1}$$
$$= \frac{1}{b} \sum_{\bar{x} \in G/H} \alpha = \alpha,$$

so that $\mu^* \mid_M = 1_M$. Since $\operatorname{Img} \mu^* \subseteq M$, it therefore follows that $\mu^* \circ \mu^* = \mu^*$. Hence we deduce that $K[G/H] = \operatorname{Img} \mu^* \oplus \ker \mu^* = M \oplus N$ as a K[G/H]-module, the result follows.

We now state and prove our main theorem.

THEOREM 3.5. Let G be a group of order $p^a b$ and (p, b) = 1 and let K be a field of characteristic p. Assume that G has a normal Sylow p-subgroup H. Then

$$JK[G] = K[G]\omega(K[H]) = \sum_{x \in H - \{1\}} K[G](x-1),$$
$$\dim_K JK[G] = b(p^a - 1).$$

Proof. Because it follows immediately from Theorem 3.2 that

$$K[G]\omega(K[H]) = \sum_{x \in H - \{1\}} K[G](x-1),$$

we will show that $JK[G] = K[G]\omega(K[H])$.

Since H is a p-group, $\omega(K[H]) = JK[H]$ by Theorem 3.2. Hence, by Lemma 3.3, $K[G]\omega(K[H]) = K[G]JK[H]$ is a nilpotent ideal of K[G] and hence it follows that $K[G]\omega(K[H]) \subseteq JK[G]$. To show the reverse inclusion, consider the K-algebra homomorphism ρ_H : $K[G] \to K[G/H]$ defined by

$$\rho_H(\sum_{g\in G} a_g g) = \sum_{g\in G} a_g \bar{g}.$$

Since ρ_H is a ring epimorphism, $\rho_H(JK[G]) \subseteq JK[G/H]$ by Proposition 2.2. But then, since $JK[G/H] = \{0\}$ by Lemma 3.4, JK[G] is contained in the kernel $K[G]\omega(K[H])$ of ρ_H . Thus we have $JK[G] = K[G]\omega(K[H])$.

It remains to show $\dim_K JK[G] = b(p^a - 1)$. By the above result,

102

$$K[G]/JK[G] = K[G]/K[G]\omega(K[H]).$$

Furthermore, since $K[G]/K[G]\omega(K[H]) \cong K[G/H]$ as a K-space and $\dim_K K[G/H] = b$, we have

$$\dim_K JK[G] = \dim_K K[G]\omega(K[H]) = b(p^a - 1).$$

References

- [1] C.W. Curtis and I. Reiner, *Representation theory of finite groups and associate algebras*, Wiley, New York, 2001.
- [2] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 1984.
- G. Karpilovsky, Dimensions of irreducible modules over twisted group algebra, Arch. Math. (basel) 45 (1985), 232–327.
- [4] F. Kasch, translated by D.A.R. Wallace, *Modules and rings*, London Mathematical Society Monograph, 1982.
- [5] N.H. McCoy, Theory of rings, Macmillan Company, New York, 1964.
- [6] D.S. Passman, Radicals of twisted group rings, London Math. Soc. 21 (1970), 409–437.
- [7] T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
- [8] M. Suzuki, Group theory I, II, Springer-Verlag, New York, 1981, 1986.
- [9] F.A. Szasz, Radicals of rings, Wiley, New York, 1981.

Department of Applied Mathematics Kum-oh National Institute of Technology Kumi 730-701, Korea *E-mail*: wsyoo@kumoh.ac.kr