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THE STRUCTURE OF THE RADICAL OF
THE NON SEMISIMPLE GROUP RINGS

Won Sok Yoo

Abstract. It is well known that the group ring K[G] has the non-
trivial Jacobson radical if K is a field of characteristic p and G is
a finite group of which order is divided by a prime p. This paper
is concerned with the structure of the Jacobson radical of such a
group ring.

1. Introduction

By Maschke’s theorem [ 4 ], the group ring K[G] of a finite group
G over a field K is semisimple if and only if K is of characteristic
0 or the characteristic of K is p and G is a finite group of which
order is not divided by p, where p is a prime. Thus, if K is a field of
characteristic p and the order of a group G is divided by p, then the
Jacobson radical of the group ring K[G] contains a non-zero element.
The purpose of this paper is to determine the structure of the Jacobson
radical of such a group ring. The following is the main theorem.

Theorem. Let G be a group of order pab and (p, b) = 1 and
let K be a field of characteristic p. Assume that G has a normal
Sylow p− subgroup H. Then JK[G] =

∑
x∈H−{1}K[G](x− 1) and

dimKJK[G] = b(pa−1), where JK[G] is the Jacobson radical of the
group ring K[G].

2. Preliminaries

Let R denote a ring, and let ◦ be a binary operation on R defined
by a ◦ b = a + b − ab. An element a of R is said to be right quasi-
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regular if there exists an element b of R such that a ◦ b = 0. A right
ideal of R is said to be right quasi-regular if each of its elements is
right quasi-regular. The Jacobson radical J(R) is the set of all element
a of R such that aR is right quasi-regular. If J(R) = {0} then R is
called a semisimple ring.

Proposition 2.1. ([ 5 ]) Let R be a ring. The Jacobson radical
J(R) of R contains every nil right (or left) ideals of R.

Proposition 2.2. Let R and S be rings. If f : R → S is a ring
epimorphism then f

(
J(R)

) ⊆ J(S).

Proof. Let a ∈ J(R) and s ∈ S. Then there exists r ∈ R such
that s = f(r). On the other hand, ar ◦ b = 0 for some b ∈ R since
ar ∈ aR and aR is right quasi- regular. Hence

f(a)s ◦ f(b) = f(a)f(r) ◦ f(b) = f(ar ◦ b) = f(0) = 0,

and so f(a)s is right quasi-regular. Because s is an arbitrary element
of S, f(a)S is right quasi-regular. Thus f

(
J(R)

) ⊆ J(S). ¤

A ring R is said to be right [resp. left] Artinian if any non empty
set of right [resp. left] ideals of R has a minimal element. R is said
to be Artinian if R is both right and left Artinian.

In the Artinian case, the following propositions are hold.

Proposition 2.3. ([ 1 ]) Let R be an Artinian ring. Then R is
semisimple if and only if every submodule of RR is a direct summand,
where RR is a right R -module R.

Proposition 2.4. ([ 2 ]) Let R be an Artinian ring. Then
(1) J(R) is a nilpotent ideal of R.
(2) Any nil right (or left) ideal of R is nilpotent.

3. The structure of the Jacobson radical of group rings

Let K be a field and let G be a multiplicative group. Then the
group ring K[G] is an associative K -algebra with the elements of G
as a basis and with addition and multiplication defined by

α + β =
∑

g∈G(ag + bg)g, αβ =
∑

g,h∈G agbhgh,
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respectively, where α =
∑

g∈G agg and β =
∑

h∈G bhh (ag, bh ∈
K, g, h ∈ G ) are elements of K[G].

From now on, assume that K is a field of characteristic p and G
is a finite group of which order is divided by p, where p is a prime.
Then the Jacobson radical JK[G] of group ring K[G] is non-trivial
by Maschke’s theorem [ 4 ]. In fact, the following theorem holds.

Theorem 3.1. Let G be a finite group and K be a field of char-
acteristic p. If the order of G is divided by p, then

K[G]α ⊆ JK[G], 1 ≤ dimKJK[G] ≤ | G | −1,

where α =
∑

g∈G g.

Proof. Let | G |= n. Then α 6= 0 and αg = α = gα for all g ∈ G.
Hence α is a non-zero central element of K[G] and

α2 = (
∑

g∈G g)α = nα = 0,

so that K[G]α = αK[G] is a non-trivial nil ideal of K[G]. Thus, by
Proposition 2.1, K[G]α ⊆ JK[G].

Moreover, since K[G] = ⊕g∈GKg and gα = α for all g ∈ G, we
have

K[G]α = ⊕g∈GKgα = Kα.

Thus dimKK[G]α = 1, and so 1 ≤ dimKJK[G] ≤ | G | −1. ¤

Let ρ : K[G] → K be the K -algebra homomorphism defined by
ρ(

∑
g∈G agg) =

∑
g∈G ag. The kernel

ω(K[G]) =
{ ∑

g∈G agg ∈ K[G] | ∑
g∈G ag = 0

}

of ρ is called the augmentation ideal of K[G]. Since ρ is a K -
algebra epimorphism, K[G]/ω(K[G]) is isomorphic to K as a K -
algebra and so dimKω(K[G]) = | G | −1. In fact ω(K[G]) has a
K -basis {x− 1 | x ∈ G, x 6= 1}. Thus

ω(K[G]) = ⊕x∈G−{1}K(x− 1).
More generally, suppose H is a normal subgroup of a group G. Then
the map ρH : K[G] → K[G/H] defined by

ρH(
∑

g∈G agg) =
∑

g∈G ag ḡ,

where ḡ = gH in G/H, is a K -algebra homomorphism and it is easy
to show that
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ker ρH = K[G]ω(K[G]).

In the following theorem, we explicitly determine the structure of
the Jacobson radical of the group ring concerned with a finite p -group,
and this result will be generalized in Theorem 3.5.

Theorem 3.2. Let G be a finite p -group with | G |= pa, where
a ≥ 1, and let K be a field of characteristic p. Then

JK[G] = ω(K[G]) =
∑

x∈G−{1}K(x− 1), dimKJK[G] = pa − 1.

Proof. Since K[G]/ω(K[G]) is isomorphic to K as a K -algebra,
the augmentation ideal ω(K[G]) is maximal in K[G]. Hence JK[G] ⊆
ω(K[G]).

To prove the reverse inclusion ω(K[G]) ⊆ JK[G], by Proposition
2.1, it suffices to show that ω(K[G]) is a nil ideal of K[G]. We will
prove this by induction on a.

If | G |= p then it is easy to show that ω(K[G])p = 0, and so
ω(K[G]) is a nil ideal of K[G].

Assume that the assertion holds for a group of order pa, and let
G be a p -group with | G |= pa+1. Now let H be the subgroup
of G with | H |= p which is contained in the center of G, and let
ρH : K[G] → K[G/H] be the K -algebra homomorphism defined by

ρH(
∑

g∈G agg) =
∑

g∈G ag ḡ.

Then, ρH

(
ω(K[G])

) ⊆ ω(K[G/H]) and ω(K[G/H]) is a nil ideal of
K[G/H] by inductive hypothesis.

Suppose that α is any element of ω(K[G]). Then ρH(am) =
ρH(α)m = 0 for some m > 0 since ω(K[G]) is a nil ideal, which
implies that αm is contained in the kernel K[G]ω(K[H]) of ρH .
Since ω(K[G]) is nilpotent by the above and since it is naturally cen-
tral in K[G], we see that K[G]ω(K[H]) is a nil ideal, so that α is a
nilpotent element. Thus ω(K[G]) is a nil ideal, the former insistence
follows.

Clearly,
ω(K[G]) =

∑
x∈G−{1}K(x− 1),

dimKJK[G] = dimKω(K[G]) = pa − 1. ¤

The following two lemmas are crucial tools for the proof of our main
theorem.
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Lemma 3.3. Let G be a finite group which contains normal Sylow
p -subgroup H and let K be a field of characteristic p. Then

K[G]JK[H] = JK[H]K[G],

and thus K[G]JK[H] is a nilpotent ideal of K[G].

Proof. Certainly, JK[H]K[G] is closed under left multiplication by
K. Thus we will show that it is closed under left multiplication by G.

But if g ∈ G, then gJK[H]K[G] = gJK[H]g−1gK[G] =
gω(K[G])g−1gK[G]

⊆ ω(K[H])gK[G] = JK[H]K[G] since JK[H] = ω(K[H])
by Theorem 3.2 and since H is normal in g. Thus we have K[G]JK[H] ⊆
JK[H]K[G]. By symmetry, the reverse inclusion also holds. Hence
K[G]JK[H] = JK[H]K[G] and it is an ideal of K[G]. Further-
more, since JK[H] is nilpotent by Proposition 2.4(1), it follows that
K[G]JK[H] is nilpotent. ¤

Lemma 3.4. Let G be a group with | G |= pab and (p, b) = 1
and let K be a field of characteristic p. If G has a normal Sylow
p -subgroup H, then K[G/H] is a semisimple ring.

Proof. By Proposition 2.3, it is sufficient to prove that if M 6= {0}
is a right ideal of K[G/H] then K[G/H] = M ⊕ N as a K[G/H] -
module for some right ideal N of K[G/H].

Since M is a K -subspace of K[G/H] and since dimKM < ∞,
there exists a K -subspace N of K[G/H] such that K[G/H] = M⊕N
as a K -space. Thus, there is, of course, the canonical projection µ of
K[G/H] onto M, which is a K -homomorphism.

Define µ∗ : K[G/H] −→ K[G/H] by

µ∗(α) =
1
b

∑
x̄∈G/H µ(α · x̄) · x̄−1,

where x̄ = xH in G/H, which is meaningful since (p, b) = 1. Then,
clearly, µ∗ is a K -homomorphism. Moreover, for any ȳ ∈ G/H, α ∈
K[G/H], µ∗(α · ȳ) =

1
b

∑
x̄∈G/H µ

(
(α · ȳ) · x̄) · x̄−1

=
1
b

∑
x̄∈G/H µ

(
α · (ȳx̄)

) · (ȳx̄)−1ȳ

=
{1

b

∑
ȳx̄∈ȳ(G/H)=G/H µ

(
α · (ȳx̄)

) · (ȳx̄)−1
} · ȳ
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= µ∗(α) · ȳ, which shows that µ∗ is a K[G/H] -
module homomorphism.

Now, suppose that α ∈ M. Then α · x̄ ∈ M for all x̄ ∈ G/H since
M is a right ideal of K[G/H]. This yields

µ∗(α) =
1
b

∑
x̄∈G/H µ(α · x̄) · x̄−1

=
1
b

∑
x̄∈G/H(α · x̄) · x̄−1

=
1
b

∑
x̄∈G/H α = α,

so that µ∗ | M = 1M . Since Img µ∗ ⊆ M, it therefore follows that
µ∗ ◦ µ∗ = µ∗. Hence we deduce that K[G/H] = Img µ∗ ⊕ ker µ∗ =
M ⊕N as a K[G/H] -module, the result follows. ¤

We now state and prove our main theorem.

Theorem 3.5. Let G be a group of order pab and (p, b) = 1 and
let K be a field of characteristic p. Assume that G has a normal
Sylow p -subgroup H. Then

JK[G] = K[G]ω(K[H]) =
∑

x∈H−{1}
K[G](x− 1),

dimKJK[G] = b(pa − 1).

Proof. Because it follows immediately from Theorem 3.2 that
K[G]ω(K[H]) =

∑
x∈H−{1}K[G](x− 1),

we will show that JK[G] = K[G]ω(K[H]).
Since H is a p -group, ω(K[H]) = JK[H] by Theorem 3.2. Hence,

by Lemma 3.3, K[G]ω(K[H]) = K[G]JK[H] is a nilpotent ideal of
K[G] and hence it follows that K[G]ω(K[H]) ⊆ JK[G]. To show
the reverse inclusion, consider the K -algebra homomorphism ρH :
K[G] → K[G/H] defined by

ρH(
∑

g∈G agg) =
∑

g∈G ag ḡ.

Since ρH is a ring epimorphism, ρH(JK[G]) ⊆ JK[G/H] by Propo-
sition 2.2. But then, since JK[G/H] = {0} by Lemma 3.4, JK[G] is
contained in the kernel K[G]ω(K[H]) of ρH . Thus we have JK[G] =
K[G]ω(K[H]).

It remains to show dimKJK[G] = b(pa − 1). By the above result,
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K[G]/JK[G] = K[G]/K[G]ω(K[H]).
Furthermore, since K[G]/K[G]ω(K[H]) ∼= K[G/H] as a K -space and
dimKK[G/H] = b, we have

dimKJK[G] = dimKK[G]ω(K[H]) = b(pa − 1). ¤
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