Direct Runoff Simulation using CN Regression Equation for Bocheong Stream

유출곡선지수 회귀식을 이용한 보청천유역의 직접유출 모의연구

  • Kwak, Jae Won (Department of Civil Engineering, INHA University) ;
  • Kim, Soo Jun (Department of Civil Engineering, INHA University) ;
  • Yin, Shan hua (Department of Civil Engineering, INHA University) ;
  • Kim, Hung Soo (Department of Civil Engineering, INHA University)
  • 곽재원 (인하대학교 공과대학 사회기반시스템공학부 토목공학과) ;
  • 김수전 (인하대학교 공과대학 사회기반시스템공학부 토목공학과) ;
  • 윤선화 (인하대학교 공과대학 사회기반시스템공학부 토목공학과) ;
  • 김형수 (인하대학교 공과대학 사회기반시스템공학부 토목공학과)
  • Received : 2010.01.19
  • Accepted : 2010.06.17
  • Published : 2010.07.30

Abstract

NRCS Curve Number (CN) method is widely used for practical purposes in the field by engineers and researchers to calculate direct runoff from total rainfall. However, CN is obtained from antecedent moisture condition and soil characteristics and so it has some problems due to its uncertainty. Therefore this study estimated CN of a watershed using asymptotic CN method which can estimate CN by rainfall and runoff data and compared the result with representative CN given by WAMIS. And we performed runoff simulation for rainy season of Bocheong stream by CN regression equation. From the result, we showed that it could be more reasonable to simulate direct runoff using watershed CN regression equation than WAMIS CN. Furthermore, we knew that the equation is more sensitive to small rainfall event.

Keywords

References

  1. 김경탁(1998). GIS 적용에 따른 유출응답에 관한연구. 박사학위 논문, 인하대학교.
  2. 김남원, 이진원, 이정우, 이정은(2008). SWAT을 이용한 충주댐 유역의 유출곡선 지수 산정 방안. 한국수자원학회 논문집. 41(12), pp. 1231-1244.
  3. 김홍태, 신현석 (2003). 신경망기법으로 분류한 토지피복도의 CN값 산정 적용성 검토. 한국수자학회논문집, 36(4), pp. 633-645.
  4. 박정훈, 유철상, 김중훈(2005). SCS 방법 적용을 위한 선행 토양함수조건의 재설정: 1. SCS 방법 검토 및 적용상 문제점. 한국수자원학회논문집, 38(11), pp. 955-962.
  5. 배덕효, 이병주, 정일원(2003). 위성영상 피복분류에 대한 CN값 산정(I) -CN값 산정-. 한국수자원학회논문집, 36(6), pp. 985-997.
  6. 오경두, 전병호, 한형근, 정성원, 조영호, 박수연(2005). 산지소유역 유출곡선지수. 한국수자원학회논문집, 38(8), pp. 605-616.
  7. 유철상, 박정훈, 김중훈(2005). SCS 방법 적용을 위한 선행 토양함수조건의 재설정: 2. 선행토양함수조건의 재설정. 한국수자원학회논문집, 38(11), pp. 963-972.
  8. 육승우, 조용재, 김재호, 김상용(2003). CN값 산정시 GIS 활용에 관한 연구. 학술발표회논문집, 한국수자원학회, pp. 963-966.
  9. 이병주, 배덕효, 정창삼(2003). 위성영상 피복분류에 대한 CN값 산정(II)-적용 및 검정-. 한국수자원학회논문집, 36(6), pp. 999-101.
  10. 임경재(2006). 수문모델의 정확성 평가를 위한 Web GIS 기반의 수문분석 툴, WHAT의 소개. 한국관개배수지, 13(2), pp. 303-309
  11. 전지홍, 최동혁, 김정진, 김태동(2009), SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출. 수질보전 한국물환경학회지, 25(2), pp. 245-255.
  12. Andrews, R. G. (1954). The Use of Relative Infiltration Indices in Computing Runoff, Soil Conservation Service, Fort Worth, Texas.
  13. Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), pp. 563-572. https://doi.org/10.1002/hyp.5611
  14. Bondelid, T. R., McCuen, R. H., and Jackson, T. J. (1982). Sensitivity of SCS models to curve number variation. Journal of the American Water Resources Association, 18(1), pp. 111-116. https://doi.org/10.1111/j.1752-1688.1982.tb04536.x
  15. Dahlke, H. E., Easton, Z. M., Fuka, D. R., Lyon, S. W., and Steenhuis, T. S. (2009). Modelling variable source area dynamics in a CEAP watershed. Ecohydrology, 2(3), pp. 337-349. https://doi.org/10.1002/eco.58
  16. Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), pp. 507-515. https://doi.org/10.1002/hyp.5675
  17. Fennessey, L. A. J., Miller, A. C., and Hamlett, K. M. (2001). Accuracy and precision of NRCS models for small watersheds. Journal of the American Water Resources Association, 37(4), pp. 899-912. https://doi.org/10.1111/j.1752-1688.2001.tb05521.x
  18. Hawkins, R. H. (1993). Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering, 119(2), pp. 334-345. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(334)
  19. Kinsel, W. G. (1980). CREAMS: A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, USDA Conservation Research Report, Texas.
  20. Krysanova, V., Wechsung, F., and Arnold, J. G. (2000). SWIM User Manual, Potsdam Institute for Climate Impact Research, Potsdam, Germany.
  21. Lim, K. J., Bernard, A., Engel, B. A., Muthukrishnan, S., and Harbor, J. (2006). Effects of intial abstraction and urbanization on estimated runoff using CN technology. Journal of the American Water Resources Association, 42(3), pp. 629-643. https://doi.org/10.1111/j.1752-1688.2006.tb04481.x
  22. Lim, K. J., Engel, B. A., Tang, Z., Choi, J., Kim, K., Muthukrishnan, S., and Tripathy, D. (2005). Automated web GIS based hydrograph analysis tool, WHAT. Journal of the American Water Recourse Association, 41(6), pp. 1407-1416. https://doi.org/10.1111/j.1752-1688.2005.tb03808.x
  23. Loucaides, S., Cahoon, L. B., and Henry, E. J. (2007). Effects of watershed impervious cover on dissolved silica loading in storm flow. Journal of the American Water Resources Association, 43(4), pp. 841-849. https://doi.org/10.1111/j.1752-1688.2007.00072..x
  24. Lyon, S. W., McHale, M. R., Walter, T. M., and Steenhuis, T. S. (2006). The impact of runoff ceneration mechanisms on the location of critical source areas. Journal of the American water Resources Association, 42(3), pp. 793-804. https://doi.org/10.1111/j.1752-1688.2006.tb04493.x
  25. Matt, G., Harbor, J., and Engel, B. (1998). Composite VS. distributed curve numbers: Effects on estimates of storm runoff depths. Journal of the American Water Resources Association, 34(5), pp. 1015-1023. https://doi.org/10.1111/j.1752-1688.1998.tb04150.x
  26. Moglen, G. E. (2000). Effect of orientation of spatially distributed curve numbers in runoff calculations. Journal of the American Water Resources Association, 36(6), pp. 1391-1400. https://doi.org/10.1111/j.1752-1688.2000.tb05734.x
  27. Natural Resources Conservation Service (1984). Computer Program for Project Formulation-hydrology, Technical Release, No. 20, Washington, D. C.
  28. Natural Resources Conservation Service (1986). Urban Hydrology for Small Watersheds, Technical Release No. 55, Washington, D. C.
  29. Nearing, M. A., Liu, B. Y., Risse, L. M., and Zhang, X. (1996). Curve numbers and GREEN-AMPT effective hydraulic conductivities. Journal of the American Water Resources Associalion, 32(1), pp. 125-136. https://doi.org/10.1111/j.1752-1688.1996.tb03440.x
  30. Sahu, R. K., Mishra, S. K., Eldho, T. I., and Jain, M. K. (2007). An advanced soil moisture accounting procedure for SCS curve number method. Hydrological Processes, 21(21), pp. 2872-2881. https://doi.org/10.1002/hyp.6503
  31. Soil Conservation Service (1985). National Engineering Handbook, Supplement A. Section 4, Chapter 10, Soil Conservation Service, USDA, Washington, D. C.
  32. U. S. Army Corps of Engineers (1988). The Evolution of the Flood Control Act of 1936, U. S. ACE, Washington, D. C.
  33. U. S. Army Corps of Engineers (1999). HEC-HMS Hydrologic Modeling System User's Manual, U.S. ACE, Washington, D. C.
  34. Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P. (1989). AGNPS: a nonpoint source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, 44(2), pp. 168-173.