미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교

Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates

  • 유재철 (부산대학교 사회환경시스템공학부) ;
  • 조해인 (부산대학교 사회환경시스템공학부) ;
  • 조순자 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Yu, Jaecheul (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Haein (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Sunja (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Taeho (Department of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2010.02.03
  • 심사 : 2010.05.04
  • 발행 : 2010.07.30

초록

Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

키워드

참고문헌

  1. 유재철, 이태호(2009). 환원전극부 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가. 대한환경공학회지, 31(4), pp. 249-255.
  2. 이준호, 박갑성(2008). 유류오염대수충 고온공기분사공정시 제한효소다형성 미생물 군집. 수질보전 한국물환경학회지, 24(1), pp. 19-29.
  3. Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295(5554), pp. 483-485. https://doi.org/10.1126/science.1066771
  4. Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., and Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and baeteiral viability in microbial fuel cells. Bioresource Technology, 100, pp. 3518-3525. https://doi.org/10.1016/j.biortech.2009.02.065
  5. Delong, E. F. and Chandler, P. (2002). Power from the deep. Nature Biotechnology, 20(8), pp. 821-825.
  6. Du, Z., Li, H., and Gu, T. (2007). A State of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, pp. 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  7. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan. B. E., Nealson, K. H., and Fredrickson, J. K. (2006). Electrically conductive bacterial nano-wires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), pp. 11358-11361. https://doi.org/10.1073/pnas.0604517103
  8. Jung, S. H. and Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbialogy and Biotechnology, 77(2), pp. 393-402. https://doi.org/10.1007/s00253-007-1162-y
  9. Lee, H. S., Parammeswaran, P., Marcus, A. K., Torres C. I., and Rittmann, B. E. (2008). Evaluation of energy-conversion efficiencies in microbial fuel cells(MFCs) utilizing fermentable and non-fermentable substrates. Water Research, 42, pp. 1501-1510. https://doi.org/10.1016/j.watres.2007.10.036
  10. Liu, H., Cheng, S., and Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology, 39(2), pp. 658-662. https://doi.org/10.1021/es048927c
  11. Logan, B. E. (2007). Microbial Fuel Cells, WILEY-InterScicence.
  12. Logan, B. E., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J., Frequie, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology, 40(17), pp. 5181-5192. https://doi.org/10.1021/es0605016
  13. Logan, B. E. and Regan, J. M. (2006). Microbial fuel cells-challenges and applications. Environmental Science and Technology, 40(17), pp. 5172-5180. https://doi.org/10.1021/es0627592
  14. Oh, S. E., Min, B., and Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science and Technology, 38(18), pp. 4900-4904. https://doi.org/10.1021/es049422p
  15. Reguera, G., Nevin, K. P., Nicoll, J. S., Covealla, S. F., Woodard, T. L., and Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 71(11), pp. 7345-7348.
  16. Rozendal, R., Hamelers, H. V. M., Rabaey, K., Keller, J., and Buisman, C. J. N. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26(8), pp. 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
  17. Schroder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, pp. 2619-2629. https://doi.org/10.1039/b703627m
  18. Shimoyama, T., Yamazawa, A., Ueno, Y., and Watanabe, K. (2009). Phylogenetic analysis of bacterial communities developed in a cassette-electrode microbial fuel cell. Microbes and Environments, 14(2), pp. 188-192.
  19. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., and Lowy, D. A. (2002). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20, pp. 821-825.
  20. Zhi, Y., Liu, H., and Yeo, L. (2008). The effect of suspended sludge on electricity generation in microbial fuel cells. IEEE International Conference on Bioinformatics and Biomedical Engineering, 2, pp. 2923-2927.