DOI QR코드

DOI QR Code

GLOBAL VORTICITY EXISTENCE OF A PERFECT INCOMPRESSIBLE FLUID IN B0∞,1(ℝ2)∩Lp(ℝ2)

  • Pak, Hee Chul (Department of Applied Mathematics and Institute of Basic Sciences Dankook University) ;
  • Kwon, Eun-Jung (Department of Applied Mathematics Dankook University)
  • Received : 2010.02.28
  • Accepted : 2010.04.23
  • Published : 2010.06.30

Abstract

We prove the global (in time) vorticity existence for the 2-D Euler equations of a perfect incompressible fluid in $B^0_{{\infty},1}({\mathbb{R}}^2){\cap}L^p({\mathbb{R}}^2)$ with 1 < p < 2. Moreover, we prove that the particle trajectory map X(x, t) satisfies the following estimate: for some positive constant C $${\parallel}X^{\pm1}(\cdot,\;t)-id(\cdot){\parallel}_{B^1_{\infty,1}}{\leq}Ce^{e^{Ct}}$$, where id represents the identity map on ${\mathbb{R}}^2$.

Keywords

Acknowledgement

Supported by : Dankook University

References

  1. J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66. https://doi.org/10.1007/BF01212349
  2. J. M. Bony, Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires, Ann. de l'Ecole Norm. Sup. 14 (1981), 209-246. https://doi.org/10.24033/asens.1404
  3. D. Chae, On the Euler Equations in the Critical Triebel-Lizorkin Spaces, Arch. Rational Mech. Anal. 170 (2003), 185-210. https://doi.org/10.1007/s00205-003-0271-8
  4. J.-Y. Chemin, Perfect incompressible fluids, Clarendon Press, Oxford, 1981.
  5. H-C Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B^1_{{\infty},1}(R^n)$, Commun. Part. Differ. Eq. 29 (2004), 1149-1166. https://doi.org/10.1081/PDE-200033764
  6. H-C Pak and Y. J. Park, Vorticity existence for an ideal incompressible fluid in $B^1_{{\infty},1}(R^3){\cap}L^p(R^3)$, J. Math. Kyoto Univ. 45 (2005), no. 1, 1-20. https://doi.org/10.1215/kjm/1250282965
  7. E. M. Stein, Harmonic analysis; Real-variable methods, orthogonality, and osillatory integrals, Princeton Mathematical Series 43, 1993.
  8. M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197-214. https://doi.org/10.1007/s002050050128