바이오가스 활용과 품질기준

Applications and technical standards for biogas

  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Kim, Seung-Soo (Department of Chemical Engineering, Samcheok Campus, Kangwon National University)
  • 투고 : 2010.07.29
  • 심사 : 2010.09.27
  • 발행 : 2010.09.30

초록

유기성 폐기물의 혐기성발효공정에 의한 바이오가스 연구가 다양한 목적으로 활발하게 진행되고 있다. 혐기성공정 또는 매립지에서 생성되는 바이오가스의 주요 조성은 메탄, 이산화탄소와 미량의 황화수소와 암모니아로 구성되며, 생산지에서 불순물을 정화시킨 후 바로 사용하거나 혹은 파이프라인을 통해 천연가스처럼 사용할 수 있다. 생산된 바이오가스는 열과 스팀생산, 전기생산, 자동차용 연료 및 화학물질 생산 등에 사용되어질 수 있다. 바이오가스는 사용 용도에 따라 여러 나라들의 관련 규정들이 정비되고 있지만 아직까지 국제적으로 공인된 표준 규격은 없다. 본 논문에서는 세계 각국의 바이오가스 용도별 품질특성을 살펴보았다.

The technology of anaerobic digestion of organic wastes has been researched for the production of biogas in various purposes. Biogas comes from anaerobic digestion and landfill in which that of main components are methane and carbon dioxide containing small amount of hydrogen sulfide and ammonia. Biogas can either be used directly on the site where it is generated after proper upgrading or distributed to external customer via separate pipelines like natural gas. There are four basic ways biogas can be utilized such as production of heat and steam, electricity production, vehicle fuel and production of chemicals. There is no international technical standard for biogas use but some countries have developed national standards and procedures for biogas use. In this paper, technical standards of biogas depending on purpose have reviewed for the several countries.

키워드

참고문헌

  1. http://imd.krei.re.kr/pdf/pdfsource/245958p.pdf
  2. http://www.biogas-nord.com/ko/renewable-energy-why-korea/what-is-a-biogas-plant-korea.
  3. Trendsetter Report No 2003:3, "Biogas as Vehicle Fuel - A European Overview" (2003).
  4. Ajhar, M., Travessert, M., Y' 'ce, S. and Melin, T., "Siloxane removal from randfill and digester gas - A technology overview", Bioresource Technology, 101, pp. 2913-2923 (2010). https://doi.org/10.1016/j.biortech.2009.12.018
  5. Hendriks, A.T.W.M. and Zeeman, G., "Pretreatments to enhance the digestibility of lignocellulosic biomass", Bioresource Technology, 100, pp. 10-18 (2010).
  6. 유성인, 홍성모, "축산폐수 Biogar 발전 플랜트", DICT Newsletter, pp. 6-9 (2006)
  7. http://www.iea-biogas.net/Dokumente/upgrading_rz_low_final.pdf
  8. Rasi, S., Lehtinen, J. and Rintala, J., "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants", Renewable Energy, 35, pp. 2666-2673 (2010). https://doi.org/10.1016/j.renene.2010.04.012
  9. Funk Jr., P.V.K., Bauer, D.J. and Morris D., "The promise and realities of biogas produced from landfills and farm waste", Cogeneration & Distributed Generation Journal, 25(2), pp. 44-51 (2010). https://doi.org/10.1080/15453669.2010.9914396
  10. Chae, K.J., Jand, A., Yim, S.K., and Kim, In S., "The effects of digestion temperature and temperaute shock on the biogas yields from the mesophilic anaerobic digestion of swine manure", Bioresource Technology, 99, pp. 1-6 (2008). https://doi.org/10.1016/j.biortech.2006.11.063
  11. De Giannis, G., Muntoni, A., Gappai, G. and Milia, S., "Landifill gas generation after mechnical biological treatment of municipal solid waste, Estimation of gas generation rate constants", Wate Management, 29, pp. 1026-1034 (2009).
  12. Persson, M. and Wellinger, A., "Biogas upgrading and utilization", IEA Bioenergy, (2006)
  13. Biogas Barometer, EurObserb's ER 45, (2008)
  14. http://www.oceandumping.re.kr
  15. Vinner's, B., $Sch\ddot{n}ning$, C. and Nordin, A., "Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas useage", Science of the Total Environment, 367, pp. 606-615 (2006). https://doi.org/10.1016/j.scitotenv.2006.02.008
  16. http://www.emc.or.kr/quotation/reclamation.asp
  17. http://www.kogas.or.kr/gas_info/industry/fuel_heat.jsp
  18. Rutz, D., Janssen, R., "Overview and Recommendations on Biofuel Standards for Transport in the EU", WIP Renewable Energies, (2006).
  19. 석유 및 석유대체연료 사업법령집 (2007).