DOI QR코드

DOI QR Code

A Semi-analytical Model for Depletion-mode N-type Nanowire Field-effect Transistor (NWFET) with Top-gate Structure

  • Yu, Yun-Seop (Engineering and Electronic Technology Institute, Hankyong National University)
  • Received : 2010.03.23
  • Published : 2010.06.30

Abstract

We propose a semi-analytical current conduction model for depletion-mode n-type nanowire field-effect transistors (NWFETs) with top-gate structure. The NWFET model is based on an equivalent circuit consisting of two back-to-back Schottky diodes for the metal-semiconductor (MS) contacts and the intrinsic top-gate NWFET. The intrinsic top-gate NWFET model is derived from the current conduction mechanisms due to bulk charges through the center neutral region as well as of accumulation charges through the surface accumulation region, based on the electrostatic method, and thus it includes all current conduction mechanisms of the NWFET operating at various top-gate bias conditions. Our previously developed Schottky diode model is used for the MS contacts. The newly developed model is integrated into ADS, in which the intrinsic part of the NWFET is developed by utilizing the Symbolically Defined Device (SDD) for an equation-based nonlinear model. The results simulated from the newly developed NWFET model reproduce considerably well the reported experimental results.

Keywords

References

  1. W. Lu, P. Xie, and C. M. Lieber, “Nanowire Transistor Performance Limits and Applications,” IEEE Trans. Electron Dev., vol. 55, no. 11, pp. 2859-2876, Nov. 2008. https://doi.org/10.1109/TED.2008.2005158
  2. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. vol. 32, no. 2, pp. 99-108, 2007. https://doi.org/10.1557/mrs2007.41
  3. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, “High-speed integrated nanowire circuits,” Nature, vol. 434, pp. 1085, 2005. https://doi.org/10.1038/4341085a
  4. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and ... from assembled nanowire building blocks,” Science, vol. 294, pp. 1313-1317, 2001. https://doi.org/10.1126/science.1066192
  5. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, “Nanowire crossbar arrays as address decoders for integrated nanosystems,” Science, vol. 302, pp. 1377-1379, 2003. https://doi.org/10.1126/science.1090899
  6. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, pp. 489-493, 2006. https://doi.org/10.1038/nature04796
  7. Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, and F. Ren, “Depletion-mode ZnO nanowire field-effect transistor,” Appl. Phys. Lett. vol. 85, pp. 2274-2276, 2004. https://doi.org/10.1063/1.1794351
  8. S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D. Wang, “High electron mobility InAs nanowire field-effect transistors,” Small, vol. 3, pp. 326-332, 2007. https://doi.org/10.1002/smll.200600379
  9. H.-Y. Cha, H. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, and M. G. Spencer, “Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors,” Nanotechnol., vol. 17, pp. 1264-1271, 2006. https://doi.org/10.1088/0957-4484/17/5/018
  10. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. Mclntyre, T. Krishnamohan, and K. C. Saraswat, “Germanium nanowire field-effect transistors with SiO2 and high-${\kappa}$ HfO2 gate dielectrics,” Appl. Phys. Lett., vol. 83, pp. 2432-2434, 2003. https://doi.org/10.1063/1.1611644
  11. W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, “Fabrication and electrical characteristics of high performance ZnO nanorod field effect transistors,” Appl. Phys. Lett., vol. 85, pp. 5052-5054, 2004. https://doi.org/10.1063/1.1821648
  12. S. M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors”, Nanotechnol., vol. 16, pp. 1482-1485, 2006
  13. O. Hayden, M. T. Bjork, H. Schmid H, H. Riel, U. Drechsler, S. F. Karg, E. Lortscher, and W. Riess, “Fully-Depleted Nanowire Field Effect Transistor in Inversion Mode,” Small, vol. 3, pp. 230-234, 2007. https://doi.org/10.1002/smll.200600325
  14. T. L. Wade, X. Hoffer, A. D. Mohammed, J.-F. Dayen, D. Pribat, and J.-E. Wegrowe, “Nanoporous alumina wire templates for surrounding-gate nanowire transistors,” Nanotechnol., vol. 18, pp. 125201-125204, 2007. https://doi.org/10.1088/0957-4484/18/12/125201
  15. Z. Y. Zhang, C. H. Jin, X. L. Liang, Q. Chen, and L. M. Peng, “Current-voltage characteristics and parameter retrieval of semiconducting nanowires,” Appl. Phys. Lett., vol. 88, pp. 073102, 2006. https://doi.org/10.1063/1.2177362
  16. S. H. Lee, Y. S. Yu, S. W. Hwang, and D. Ahn, “SPICE-compatible New Silicon Nanowire Field-Effect Transistors (SNWFETS) Model,” IEEE Trans. Nanotechnol., vol. 8, no. 5, pp. 643-649, 2009. https://doi.org/10.1109/TNANO.2009.2019724
  17. Y. S. Yu, S. H. Lee, J. H. Oh, H. J. Kim, S. W. Hwang, and D. Ahn, “A compact analytical current conduction model for depletion-mode n-type nanowire field-effect transistor (NWFET) with bottom-gate structure,” Semicond. Sci. Technol., vol. 23, pp. 035025, 2008. https://doi.org/10.1088/0268-1242/23/3/035025
  18. C. Y. Yim, D. Y. Jeon, K. H. Kim, G. T. Ki, Y. S. Woo, S. Roth, J. S. Lee, and S. Kim, “Electrical Properties of the ZnO Nanowire Transistor and its Analysis with Equivalent Circuit Model,” J. Kor. Phys. Soc., vol. 48, pp. 1565-1569, 2006.
  19. J.-P. Colinge, “Conduction Mechanism in Thin-Film Accumulation-Mode SOI p-Channel MOSFET's,” IEEE Trans. Electron Dev., vol. 37, pp. 718-723, 1990. https://doi.org/10.1109/16.47777
  20. S. H. Lee, Y. S. Yu, S. W. Hwang, and D. Ahn, “Equivalent Circuit Model of Semiconductor Nanowire Diode by SPICE”, J. Nanoscience Nanotechnol., vol. 7, no. 11, pp. 4089-4093, 2007. https://doi.org/10.1166/jnn.2007.012
  21. Agilent Technologies 2003 Advanced Design System.

Cited by

  1. Analyses on Small-Signal Parameters and Radio-Frequency Modeling of Gate-All-Around Tunneling Field-Effect Transistors vol.58, pp.12, 2011, https://doi.org/10.1109/TED.2011.2167335