DOI QR코드

DOI QR Code

Statistical Characteristics of Atmospheric Conditions related to Radar Beam Propagation using Radiosonde Data in 2005-2006

2005-2006년 라디오존데 자료를 이용한 레이더 빔전파와 연관된 대기상태의 통계적 특성

  • Jung, Sung-Hwa (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Gyu-Won (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • 정성화 (경북대학교 천문대기과학과) ;
  • 이규원 (경북대학교 천문대기과학과)
  • Received : 2010.07.18
  • Accepted : 2010.09.16
  • Published : 2010.10.31

Abstract

The variation of atmospheric conditions including subrefraction, normal refraction, superrefraction, and ducting is an important factor that affects the quality of radar data by controling the propagation of radar beams. The occurrence frequency of the conditions is statistically analyzed using the atmospheric soundings from seven radiosonde stations in South Korea over two years. The occurrence of superrefraction and ducting at Baengnyeongdo is significantly higher than the others. Osan and Kwangju show significant variation in time. Among the different duct conditions, the surface duct is dominant at most stations except for Gosan. The elevated duct is dominant at Heuksando and Gosan. Duct is more frequent in summer than in winter at all stations. Baengnyeongdo shows the most frequent duct in spring, fall, and winter while Pohang had the highest frequency in summer. Osan and Kwangju show least duct during all seasons. The difference of variation of monthly duct occurrence between 00 UTC and 12 UTC is insignificant at all stations except for Osan and Kwangju. Kwangju, Heuksando and Gosan show relatively low frequency of duct with the monthly maximum barely reaching 60%. The highest number of elevation angles that are affected by duct was four at Osungsan radar (KSN). The maximum elevation angle is around $1.0^{\circ}$ at all stations and Jindo radar (JNI) shows the maximum value of $1.2^{\circ}$.

우리나라의 7개 라디오존데 관측소의 2년간 관측자료를 이용하여 레이더 빔의 진행과 관련된 과대굴절, 빔갇힘의 발생빈도를 통계 분석하였다. 과대굴절과 빔갇힘의 발생빈도는 백령도가 다른 지역에 비해 높았으며 오산과 광주는 시간대별 변화가 가장 크게 나타났다. 세부적인 빔갇힘 발생빈도에서는 고산을 제외한 모든 관측소에서 지표 빔갇힘의 발생이 우세하였으며 흑산도, 고산은 상층 빔갇힘의 비율이 다른 관측소들에 비해 높았다. 계절변동에서는 전체적으로 여름이 겨울에 비해 빔갇힘 발생비율이 높았다. 빔갇힘의 발생은 봄, 가을 겨울에 백령도가 가장 우세하였으며 여름은 포항으로 나타났다. 오산과 광주는 모든 계절에서 발생빈도가 가장 적었다. 빔갇힘의 월별분포에서는 오산과 광주를 제외한 관측소에서는 00 UTC와 12 UTC 간에 큰 차이가 없었다. 광주, 흑산도, 고산은 월별 총 발생비율의 최대값이 60%를 넘지 않았으며 전체적인 발생비율도 다른 관측소들에 비해 낮게 나타났다. 빔갇힘 발생가능 레이더 관측 고도각 조사에서 KSN이 4개 고도각으로 고도각수에서 최고로 나타났으며 JNI가 고도각 $1.2^{\circ}$로 고도각에서 최고로 나타났다. 전체적으로는 $1.0^{\circ}$ 근처에서 최대 고도각이 나타났다.

Keywords

References

  1. 기상청, 2006, 기상장비사전. 동진문화사, 서울, 256 p.
  2. Babin, S.M., 1996, Surface duct height distributions for Wallops Island, Virginia, 1985-1994. Journal of Applied Meteorology, 35, 86-93. https://doi.org/10.1175/1520-0450(1996)035<0086:SDHDFW>2.0.CO;2
  3. Battan, L.J., 1973, Radar observation of the atmosphere. The University of Chicago, Chicago, USA, 324 p.
  4. Bean, B.R. and E.J. Dutton, 1968, Radio Meteorology. Dover of Chicago Press, Washington, USA, 324 p.
  5. Bech, J. and Bebbington, D.H., Codina, B., Sairouini, A., and Lorente, J., 1998, Evaluation of atmospheric anomalous propagation conditions: An application for weather radar. Proceedings of EUROPTO conference on remote sensing for agriculture, echosystems, and hydrology, Society of Photo-Optical Instrumentation Engineers, Barcelona, Spain, 111-115.
  6. Bech, J., Codina, B., Lorente, J., and Bebbington, D., 2000, Weather radar anaprop conditions at a Mediterranean coastal site. Physical Chemistry Earth, 25B, 829-832.
  7. Bech, J., Codina, B., Lorente, J., and Beggington, D., 2002, Monthly and daily variations of radar anomalous propagation conditions: How "normal" is normal propagation? Proceeding of second European conference on radar meteorology, Copernicus GmbH, Delft, Netherlands, 35-39.
  8. Brooks, I.M., Goroch, A.K., and Rogers, D.P., 1999, Observation of strong surface radar ducts over the Persian Gulf. Journal of Applied Meteorology, 38, 1293-1310. https://doi.org/10.1175/1520-0450(1999)038<1293:OOSSRD>2.0.CO;2
  9. Byers, H.R., 1974, General Meteorology. 4th ed., MacGraw-Hill Inc., NY, USA, 461 p.
  10. Cho, Y.H., Lee, G., Kim, K.E., and Zawadzki, I., 2006, Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. Journal of Atmospheric and Oceanic Technology, 23, 1206-1222. https://doi.org/10.1175/JTECH1913.1
  11. Craig, K.H. and Hayton, T.G., 1995, Climatic mapping of refractivity parameters from radiosonde data. Proceedings of conference 567 on propagation assessment in coastal environments, Bremerhaven, Germany, AGARDNATO, 43-1-43-14.
  12. Doviak, R.J. and Zrnic, D.S., 1993, Doppler Radar and Weather Observations. Academic Press, San Diego, USA, 562 p.
  13. Fabry, F., Frush, C., Zawadzki, I., and Kilambi, A., 1997, On the extraction of near-surface index of refraction using radar phase measurements from ground targets. Journal of Atmospheric and Oceanic Technology, 14, 978-987. https://doi.org/10.1175/1520-0426(1997)014<0978:OTEONS>2.0.CO;2
  14. Glickman, T.S. (ed.), 2000, Glossary of Meteorology. 2nd ed., American Meteorology Society, Massachusetts, USA, 850 p.
  15. Gossard, E.E., 1977, Refractive index variance and its height distribution in different air masses. Radio Science, 12, 89-105. https://doi.org/10.1029/RS012i001p00089
  16. Harrison, D.L., Driscoll, S.J., and Kitchen, M., 2000, Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Application, 7, 135-144. https://doi.org/10.1017/S1350482700001468
  17. Hitney, H.V., Richter, J.H., Pappert, R.A., Anderson, K.D., and Baumgartner Jr., G.B., 1985, Tropospheric radio propagation assessment. Proceedings of the Institute of Electrical and Electronics Engineers, 73, 265-283. https://doi.org/10.1109/PROC.1985.13138
  18. Hubbert, C.J., Dixon, M., Ellis, S.M., and Meymaris, G., 2009, Weather radar ground clutter. Part I: Identification, Modeling, and Simulation. Journal of Atmospheric and Oceanic Technology, 26, 1165-1180. https://doi.org/10.1175/2009JTECHA1159.1
  19. Joss, J. and Lee, R.W., 1995, The application of radargauge comparisons to operational precipitation profile corrections. Journal of Applied Meteorology, 34, 2612-2630. https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2
  20. Jung, S.-H., Lee, Y.-J., and Kim, K.-E., 2007, Investigation of surface duct condition over Korean peninsula. Proceedings of the Autumn Meeting of Korean Meteorological Society, 2007, 338-339.
  21. Mentes, S.S. and Kaymaz, Z., 2007, Investigation of surface duct condition over Istanbul, Turkey. Journal of Applied Meteorology and Climatology, 46, 318-337. https://doi.org/10.1175/JAM2452.1
  22. Moszkowicz, S., Ciach, G.J., and Krajewski, W.F., 1994, Statistical detection of anomalous propagation in radar reflectivity patterns. Journal of Atmospheric and Oceanic Technology, 11, 1026-1034. https://doi.org/10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2
  23. NOAA, 2007, www.roc.noaa.gov (검색일: 2007. 12. 10.)
  24. Patterson, W.L., Hattan, C.P., Lindem, G.E., Paulus, R.A., Hitney, H.V., Anderson, K.D., and Barrios, A.E., 1994, Engineer's refractive effects prediction system (EREPS). Version 3.0, Naval Command Control and Ocean Surveillance Center, San Diego, USA, 113 p.
  25. Rinehart, R.E., 2004, Radar for Meteorologists. 4th ed., Rinehart, Nevada, USA, 482 p.
  26. Skolnik, M.I., 1980, Introduction to Radar Systems. 2nd ed., McGraw-Hill International Editions, 581 p.
  27. Smith, J.A, Seo, D.J., Baeck, M.L., and Hudlow, M.D., 1996, An intercomparison study of NEXRAD precipitation estimates. Water Resource, 32, 2035-2045. https://doi.org/10.1029/96WR00270
  28. Steiner, M. and Smith, J.A., 2002, Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. Journal of Atmospheric and Oceanic Technology, 19, 673-686. https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2
  29. Stull, R.B., 1988, Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 p.
  30. Sulakvelidge, G.K., Glushkova, N.I., and Fedchenco, L.M., 1977, Forecasting of hail, thunderstorm and showers. Israel program for scientific translation, Jerusalem, Israel, 150 p.

Cited by

  1. Analysis of Quality Control Technique Characteristics on Single Polarization Radar Data vol.24, pp.1, 2014, https://doi.org/10.14191/Atmos.2014.24.1.077
  2. Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method vol.35, pp.2, 2014, https://doi.org/10.5467/JKESS.2014.35.2.115
  3. A Study on the Improvement in Local Gauge Correction Method vol.24, pp.4, 2015, https://doi.org/10.5322/JESI.2015.24.4.525
  4. Local Wind Field Simulation over Coastal Areas Using Windprofiler Data vol.22, pp.2, 2016, https://doi.org/10.7837/kosomes.2016.22.2.195
  5. An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.448