수용성 칼슘 및 IBA 처리가 '부유' 단감의 엽과 토양 내 칼슘함량에 미치는 영향

Effect of Applications of Soluble Ca and IBA on Soil and Leaf Ca Concentration in 'Fuyu' Sweet Persimmon (Diospyros kaki L.) Orchard

  • 최현석 (국립농업과학원 유기농업과) ;
  • 김영 (국립종자원 서부지원) ;
  • 김월수 (전남대학교 원예학과) ;
  • 이연 (국립농업과학원 유기농업과) ;
  • 최경주 (국립농업과학원 유기농업과) ;
  • 정석규 (경희대학교 고려인삼 명품화 사업단 및 인삼유전자원 소재은행)
  • 투고 : 2010.01.27
  • 심사 : 2010.04.16
  • 발행 : 2010.09.30

초록

`부유' 단감은 주로 MA를 통해서 저장되지만, 저장기간 동안 과육의 과정부 갈변과 과피 흡변을 가져와서 과실의 품질을 저하시킨다. 칼슘은 세포막에 중요한 역할을 하며 칼슘과 관련된 과실 생리장해를 경감시킨다. 본 연구는 수용성 칼슘 관주와 엽면살포가 토양의 화학성, 근활력 그리고 엽 내 무기성분에 어떠한 영향을 미치는지에 에 대해서 조사하였다. 칼슘 관주(Ca-FG)와 칼슘과 IBA를 혼용한 관주(Ca+IBA)처리는 대조구(Cont), 칼슘 엽면살포(Ca-FA), 그리고 IBA관주처리 (IBA)보다 높은 토양 칼슘함량을 보였으며, 토양 내 칼슐함량의 증가는 pH를 상승시키는 경향을 보였다. Ca+IBA처리는 근활력을 증가시켰다. 엽내 칼슘은 CA-FA에 증가되었고, Ca+IBA와 Ca-FG에 의해서도 증가하는 경향이 나타났다.

Sweet persimmon, 'Fuyu', is the major cultivar for MA storage, but browning of blossom end part and fruit surface darkening occur during storage and decrease fruit qualities in fresh fruit market. Calcium (Ca) has a very important role in cell membrane and reduces Ca-related fruit disorder. Therefore, this study was conducted to investigate the effect of soluble Ca fertigation and foliar applications on soil chemical properties, root activity, and leaf nutrient status. Ca concentration in the soil was higher in both Ca fertigation (Ca-FG) and Ca+IBA fertigation (Ca+IBA) treatments than the other treatments, such as control (Cont), Ca foliar application (Ca-FA), and IBA fertigation (IBA). The increase in soil Ca improved soil pH. The Ca+IBA treatment increased root activity. Leaf Ca concentration was significantly increased by the CA-F A application, followed by Ca+IBA, and Ca-FG treatments.

키워드

참고문헌

  1. Bhella, H. S. and G. E. Wilcox. 1989. Lime and nitrogen influence soil acidity, nutritional status, vegetative growth and yield of muskmelon. J. Amer. Soc. Hort. Sci. 114: 606-610.
  2. Elamin, O. M. and G. E. Wilcox. 1986. Effect of soil acidity and magnesium on muskmelon leaf composition and fruit yield. J. Amer. Soc. Hort. Sci. 111: 682-685.
  3. Faust, M. (ed.). 1989. Nutrition of fruit trees. p. 53-132. In: Physiology of Temperate Zone Fruit Trees. A Wiley-InterScience Publication.
  4. Kim, Y., W. S. Kim, H. S. Choi, and M. Gu. 2009. Effects of calcium and indole-3-butyric and treatments on calcium concentration and stem-end browning in 'Fuyu' sweet persimmons. Kor. J. Food Preserv. 16: 459-462.
  5. Konsler, T. R. and J. E. Shelton. 1990. Lime and phosphorous effects on American ginseng: growth, soil fertility, and root tissue nutrient status response. J. Amer. Soc. Hort. Sci. 115: 570-574.
  6. Kubowicz, B. D., L. N. Vanderhoef, and J. B. Hanson. 1982. ATP dependent calcium transport in plasmamembrane preparations from soybean hypocotyl: effect of hormone treatment. Plant Physiol. 69: 187-191. https://doi.org/10.1104/pp.69.1.187
  7. Lang, A., M. H., Behboudian, J. Kidd, and H. Brown. 2001. Mulch enhances apple fruit storage quality. Acta Hort. 557: 433-439.
  8. Lee, S. H. 2000. Effects of pH and organic matter content in orchard soil on growth and fruit quality of pear tree (Pyrus pyriforia). M. S. Thesis. Chonnam National University.
  9. RDA (Rural Development Administration). 1988. Methods of soil chemical analysis. RDA, SuWon, Korea.
  10. Ro, H. M., J.M. Park, and K. Y. Kim. 1995. Effect of dissolved oxygen on the leaf water potentials, leaf nutrient compositions, root activities of 'Tsugaru' apple tree and the chemical environment of rhizosphere. J. Kor. Soc. Hort. Sci. 36: 493-499.
  11. Stiles, W. C. and W. S. Reid. 1991. Orchard nutrition management. pp. 1-23. Cornell Cooperative Extension, Ithaca, U.S.A.
  12. Yim, Y. J. 1983. Effects of calcium on the fruit quality in the deciduous fruit trees. J. Kor. Soc. Hort. Sci. 24: 338-352.