Current Research Trends in Microbial Fuel Cell Based on Polymer Electrolyte Membranes

고분자 전해질 분리막 기반 미생물 연료전지의 최근 연구동향

  • Choi, Tae-Hwan (Department of Energy Engineering Hanyang University) ;
  • Kim, Hyo-Won (Department of Energy Engineering Hanyang University) ;
  • Park, Ho-Bum (Department of Energy Engineering Hanyang University)
  • 최태환 (한양대학교 에너지공학과) ;
  • 김효원 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2010.09.05
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

Microbial fuel cell (MFC) is a promising renewable energy source that can generate electrical energy from organic wastes using microbe. This technology has been regarded as a future green alternative energy in that MFC makes use of organic-rich wastewater and also reduces waste sludges as well as produces electricity. To be practically realized, however, achieving higher power density than now is demanded, which may be possible by eliminating various negative factors to act as resistances in MFC operations. For instance, highly activated microbes, highly conductive electrode materials, and fast electron transfer between microbes and electrodes can lead to MFC with high power density. In particular, polymer electrolyte membranes are also a key component for improved MFC performance.

미생물 연료전지는 신재생에너지로서 미생물이 유기물을 분해하는 신진대사 과정을 통해서 전기에너지를 생성한다. 각종 유기물이 풍부한 폐수를 이용하여 전력을 생산할 뿐 아니라, 슬러지 발생량도 감축할 수 있는 미래 전도유망한 친환경에너지이다. 하지만 이를 상용화하기 위해서는 전지 내부에서 발생하는 모든 저항요소들을 감소시켜 더 높은 전력밀도를 생산해야 될 필요가 있다. 예를 들어 신진대사가 활발한 미생물의 종류, 미생물과 전극의 효과적인 전자전달 과정, 전극의 재료 및 형태 등의 개선을 통하여 전력밀도를 높일 수 있다. 특히, 고분자 전해질 분리막의 성능개선은 산화, 환원전극조를 완벽히 분리할 뿐만 아니라, 환원전극으로의 수소이온 전도도를 높여 내부저항을 줄일 수 있는 핵심 요소이다.

Keywords

References

  1. Future Eco, "Generate Power in the Wastewater", Future Eco Magazine, 3, 100 (2010), (http://www.ecofuture.co.kr).
  2. B. E. Logan, "Microbial Fuel Cells", John Willy & Sons (2008).
  3. A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. R. Rozendal, and C. J. N. Buisman, "A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells", Environ. Sci. Technol., 40(17), 5200 (2006). https://doi.org/10.1021/es0608545
  4. A. Shantaram, H. Beyenal, R. Raajan, A. Veluchamy, and Z. Lewandowski, "Wireless sen-sors powered by microbial fuel cells", Environ. Sci. Technol., 39(13), 5037 (2005). https://doi.org/10.1021/es0480668
  5. M. T. Madigan and J. M. Martinko, "Brock Biology of Microorganisms", Person Education Inc., Upper Saddle River, NJ. (2006).
  6. O. Schaetzle, F. Barriere, and K. Baronian, "Bac-teria and yeasts as catalysts in microbial fuel cells : electron transfer from micro-organisms to electro-des for green electricity", Energy Environ. Sci., 1, 607 (2008). https://doi.org/10.1039/b810642h
  7. S. K. Lower, M. F. Hochella, and T. J. Beveridge, "Bacterial recognition of mineral surfaces : nano-scale interactions between Shewanella and alpha-FeOOH", Science, 292(5520), 1360 (2001). https://doi.org/10.1126/science.1059567
  8. Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pin-chuk, K. Watanabe, S. Ishii, B. E. Logan, K. A. Nealson, and J. K. Fredrickson, "Electrically con-ductive bacterial nanowires produced by Shewanel-la oneidensis strain MR-1 and other micro-organisms", PNAS, 103(30), 11358 (2006).
  9. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, "Extracellular electrontransfer via microbial nano-wires", Nature, 435(7045), 1098 (2005). https://doi.org/10.1038/nature03661
  10. H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, "A mediator-less micro-bial fuel cell using a metalreducing bacterium, Shewanella putrefaciens", Enzyme Microb. Technol., 30(2), 145(2002). https://doi.org/10.1016/S0141-0229(01)00478-1
  11. A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P. D. Nardo, and E. Traversa, "Engineering materi-als and biology to boost performance of microbial fuel cells : a critical review", Energy Environ. Sci., 1, 417 (2008). https://doi.org/10.1039/b806498a
  12. F. Zhao, R. C. T. Slade, and J. R. Varcoe, "Tech-niques for the study and development of microbial fuel cells : an electrochemial perspective", Chem. Soc. Rev., 38, 1926 (2009). https://doi.org/10.1039/b819866g
  13. B. E. Logan and J. M. Regan, "Electricity-produc-ing bacterial communities in microbial fuel cells", Trends Microbiol., 14(12), 512 (2006). https://doi.org/10.1016/j.tim.2006.10.003
  14. D. R. Bond and D. R. Lovley, "Electricity pro-duction by Geobacter sulfurreducens attached to electrodes", Appl. Environ. Microbiol., 69(3), 1548 (2003). https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  15. D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, "Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production", Appl. Environ. Microbiol., 65(7), 2912 (1999).
  16. D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, "Electrode-reducing microorganisms that harvest energy from marine sediments", Science, 295(5554), 483 (2002). https://doi.org/10.1126/science.1066771
  17. B. E. Logan, "Extracting hydrogen and electricity from renewable resources", Environ. Sci. Technol., 38(9), 160A (2004). https://doi.org/10.1021/es040468s
  18. K. Rabaey and W. Verstraete, "Microbial fuel cells : novel biotechnology for energy generation", Trends Biotechnol., 23(6), 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  19. K. Rabaey, N. Boon, M. Hofte, and M. Verstraete, "Microbial phenazine production enhances electron transfer in biofuel cells", Environ. Sci. Technol., 39(9), 3401 (2005). https://doi.org/10.1021/es048563o
  20. http://www.ogc.co.jp/e/products/carbon-f/donacarbo_ paper.html.
  21. http://en.thrive-metal.com/products_detail/&productId=02ec3b0b-af85-4740-aa01-1bfdc5c72481&comp_stats=comp-FrontProducts_list01-004.html.
  22. http://www.millrose.com/carbon_fiber.htm.
  23. S. K. Chaudhuri and D. R. Lovley, "Electricity ge-neration by direct oxidation of glucose in media-torless microbial fuel cells", Nat. Biotechnol., 21(10), 1229 (2003). https://doi.org/10.1038/nbt867
  24. B. E. Logan, S. Cheng, V. Watson, and G. Estadt, "Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells", Environ. Sci. Technol., 41(9), 3341 (2007). https://doi.org/10.1021/es062644y
  25. D. H. Park and J. G. Zeikus, "Impact of electrode composition on electricity generation in a singlecompartment fuel cell using Shewanella putrefacians", Appl. Microbiol. Biotechnol., 59, 58 (2002). https://doi.org/10.1007/s00253-002-0972-1
  26. S. Cheng, H. Liu, and B. E. Logan, "Increased performance of single-chamber microbial fuel cells using an improved cathode structure", Electrochem. Commun., 8(3), 489 (2006). https://doi.org/10.1016/j.elecom.2006.01.010
  27. S. Cheng, H. Liu, and B. E. Logan, "Power den-sities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40(1), 364 (2006). https://doi.org/10.1021/es0512071
  28. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, "Biofuel cells select for micro-bial consortia that self-mediate electrontransfer", Appl. Environ. Microbiol., 70(9), 5373 (2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  29. H. Liu and B. E. Logan, "Electricity generation us-ing an air-cathode single chamber microbial fuel cell in the presence and absence of a proton ex-change membrane", Environ. Sci. Technol., 38(14), 4040 (2004). https://doi.org/10.1021/es0499344
  30. J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004 (2007). https://doi.org/10.1021/es062202m
  31. B. E. Logan, C. Murano, K. Scott, N. D. Gray, and I. M. Head, "Electricity generation from cysteine in a microbial fuel cell", Water Res., 39(5), 942 (2005). https://doi.org/10.1016/j.watres.2004.11.019
  32. B. E. Logan and J. M. Regan, "Microbial fuel cells-challenges and applications", Environ. Sci. Technol., 40(17), 5172 (2006). https://doi.org/10.1021/es0627592
  33. B. E. Logan, "Materials and configurations for scal-able microbial fuel cells", Provisional patent appli-cation, PST20918, PSU2006-3173, Penn Statte University (2005).
  34. Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, "The Upflow Microbial Fuel Cell with an Interior Cathode : Assessment of the Internal Resistance by Impedance Spectroscopy", Environ. Sci. Technol., 40(17), 5212 (2006). https://doi.org/10.1021/es060394f
  35. P. Aelterman, K. Rabaey, T. H. Pham N. Boon, and W. Verstraete, "Continuous electricity gen-eration at high voltages and currents using stacked microbial fuel cells", Environ. Sci. Technol., 40(10), 3388 (2006). https://doi.org/10.1021/es0525511
  36. S. E. Oh and B. E. Logan, "Voltage reversal dur-ing microbial fuel cell stack operation", J. Power. Sour., 167(1), 11 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.016