Synthesis and Ion Conducting Properties of Anion Exchange Membranes Based on PBI Copolymers for Alkaline Fuel Cells

PBI 공중합체를 이용한 알카라인 연료전지용 음이온교환막의 합성과 이온전도특성

  • Lee, Dong-Hoon (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Se-Jong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Kim, Hyonng-Juhn (Fuel Cell Center, Korea Institute of Science and Technology)
  • 이동훈 (한국과학기술연구원 연료전지센터) ;
  • 김세종 (경상대학교 나노신소재공학과, 아이큐브 사업단) ;
  • 남상용 (경상대학교 나노신소재공학과, 아이큐브 사업단) ;
  • 김형준 (한국과학기술연구원 연료전지센터)
  • Received : 2010.09.05
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

In order to overcome the drawback of proton exchange membrane fuel cells (PEMFCs), solid alkalime membrane fuel cells (SAMFCs) have been studied. In this report, we synthesized new sulfonated polybenzimidazole derivatives for SAMFCs. The polyimidazole derivatives were doped by KOH, and base-doped polybenzimidazoles showed high hydroxy ion conductivity and excellent mechanical properties. Especially, sPBI-co-PBI (75 : 25 for molar ratio of sulfonated and non-sulfonated moiety) showed good possibility for the anion exchange membrane. It has $2.98{\times}10^{-2}\;S/cm$ at $90^{\circ}C$ under 100% relative humidity.

기존 고분자전해질연료전지(PEMFC)의 단점을 극복하기 위해 고체전해질 알카라인연료전지(SAMFC)가 근래에 많이 연구되고 있다. 본 논문에서는 술폰화 폴리벤지이미다졸(PBI) 유도체를 이용하여 SAMFC용 막을 제조하였다. 술폰화 폴리벤지이미다졸 유도체는 KOH에 의해 쉽게 도핑되고 도핑된 막은 높은 $OH^-$의 전도도와 기계적 강도를 보였다. 특히 sPBI-co-PBI (술폰화 PBI : 비술폰화 PBI = 75 : 25)의 경우, $90^{\circ}C$ 100% 상대습도 하에서 $2.98{\times}10^{-2}\;S/cm$의 높은 $OH^-$의 전도도를 보였다.

Keywords

References

  1. S. J. C. Cleghorn, X. Ren, T. E. Springer, M. S. Wilson, C. Zawodzinski, T. A. Zawodzinski, and S. Gottesfeld, "PEM fuel cells for transportation and stationary power generation applications", Int. J. Hydrog. Energy, 12, 1137 (1997).
  2. A. Bauen and D. Hart, "Assessment of the environmental benefits of transport and stationary fuel cells", J. Power Sources, 86, 482 (2000). https://doi.org/10.1016/S0378-7753(99)00445-0
  3. Y. M. Lee and H. B. Park, "Development of membrane materials for direct methanol fuel cell", Membrane Journal, 10, 103 (2000).
  4. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  5. G. F. McLean, T. Niet, S. Prince-Richard, and N. Djilali, "An assessment of alkaline fuel cell technology", Int. J. Hydrog. Energy, 27, 507 (2002). https://doi.org/10.1016/S0360-3199(01)00181-1
  6. T. Burchardt, P. Gouerec, E. Sanchez-Cortezon, Z. Karichev and J. H. Miners, "Alkaline fuel cells: contemporary advancement and limitations", Fuel, 81, 2151 (2002). https://doi.org/10.1016/S0016-2361(02)00163-1
  7. J. R. Varcoe and R. C. T. Slade, "Prospects for alkaline anion-exchange membranes in low temperature fuel cells", Fuel Cells, 5, 187 (2005). https://doi.org/10.1002/fuce.200400045
  8. B. Y. S. Lin, D. W. Kirk, and S. J. Thorpe, "Performance of alkaline fuel cells: a possible future energy system?", J. Power Sources, 161, 474 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.052
  9. J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, S. D. Poynton, D. J. Driscoll, and D. C. Apperley, "Poly- (ethylene-co-tetrafluoroethylene)-derived radiationgrafted anion-exchange membrane with properties specifically tailored for application in metal-cationfree alkaline polymer electrolyte fuel cells", Chem. Mat., 19, 2686 (2007). https://doi.org/10.1021/cm062407u
  10. M. R. Hibbs, M. A. Hicker, T. M. Alam, S. K. McIntyre, C. H. Fujimoto, and C. J. Cornelius, "Transport properties of hydroxide and proton conducting membranes", Chem. Mat., 20, 2566 (2008). https://doi.org/10.1021/cm703263n
  11. J. Zhou, M. Unlu, J. A. Vega, and P. A. Kohl, "Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells", J. Power Sources, 190, 285 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.127
  12. L. Xiao, H, Zhang, E. Scanlon, L. S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, "High-temperature polybenzimidazole fuel cell membranes via a sol-gel process", Chem. Mater., 17, 5328 (2005). https://doi.org/10.1021/cm050831+
  13. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
  14. B. Xing and O. Savadogo, "Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)", Electrochem. Commun., 2, 697 (2000). https://doi.org/10.1016/S1388-2481(00)00107-7