DOI QR코드

DOI QR Code

Response and transcriptional regulation of rice SUMOylation system during development and stress conditions

  • Chaikam, Vijay (Division of Plant and Soil Sciences, West Virginia University) ;
  • Karlson, Dale T. (Division of Plant and Soil Sciences, West Virginia University)
  • Published : 2010.02.28

Abstract

Modification of proteins by the reversible covalent addition of the small ubiquitin like modifier (SUMO) protein has important consequences affecting target protein stability, sub-cellular localization, and protein-protein interactions. SUMOylation involves a cascade of enzymatic reactions, which resembles the process of ubiquitination. In this study, we characterized the SUMOylation system from an important crop plant, rice, and show that it responds to cold, salt and ABA stress conditions on a protein level via the accumulation of SUMOylated proteins. We also characterized the transcriptional regulation of individual SUMOylation cascade components during stress and development. During stress conditions, majority of the SUMO cascade components are transcriptionally down regulated. SUMO conjugate proteins and SUMO cascade component transcripts accumulated differentially in various tissues during plant development with highest levels in reproductive tissues. Taken together, these data suggest a role for SUMOylation in rice development and stress responses.

Keywords

References

  1. Zhao, J. (2007) Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci. 64, 3017-3033 https://doi.org/10.1007/s00018-007-7137-4
  2. Miura, K., Jin, J. B. and Hasegawa, P. M. (2007) Sumoylation, a post-translational regulatory process in plants. Curr. Opin. Plant. Biol. 10, 495-502 https://doi.org/10.1016/j.pbi.2007.07.002
  3. Jin, J. B., Jin, Y. H., Lee, J., Miura, K., Yoo, C. Y., Kim, W. Y., Van Oosten, M., Hyun, Y., Somers, D. E., Lee, I., Yun, D. J., Bressan, R. A. and Hasegawa, P. M. (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant. J. 53, 530-540 https://doi.org/10.1111/j.1365-313X.2007.03359.x
  4. Murtas, G., Reeves, P. H., Fu, Y. F., Bancroft, I., Dean, C. and Coupland, G. (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant. Cell. 15, 2308-2319 https://doi.org/10.1105/tpc.015487
  5. Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X. and Chua, N. H. (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant. Cell. 19, 2952-2966 https://doi.org/10.1105/tpc.106.049981
  6. Saracco, S. A., Miller, M. J., Kurepa, J. and Vierstra, R. D. (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant. Physiol. 145, 119-134 https://doi.org/10.1104/pp.107.102285
  7. Yoo, C. Y., Miura, K., Jin, J. B., Lee, J., Park, H. C., Salt, D. E., Yun, D. J., Bressan, R. A. and Hasegawa, P. M. (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant. Physiol. 142, 1548-1558 https://doi.org/10.1104/pp.106.088831
  8. Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun, D. J. and Hasegawa, P. M. (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant. Cell. 19, 1403-1414 https://doi.org/10.1105/tpc.106.048397
  9. Downes, B. and Vierstra, R. D. (2005) Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem. Soc. Trans. 33, 393-399 https://doi.org/10.1042/BST0330393
  10. Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y. and Vierstra, R. D. (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem. 278, 6862-6872 https://doi.org/10.1074/jbc.M209694200
  11. Conti, L., Price, G., O'Donnell, E., Schwessinger, B., Dominy, P. and Sadanandom, A. (2008) Small Ubiquitin- Like Modifier Proteases OVERLY TOLERANT TO SALT1 and -2 Regulate Salt Stress Responses in Arabidopsis. Plant. Cell. 20, 2894-2908 https://doi.org/10.1105/tpc.108.058669
  12. Lois, L. M., Lima, C. D. and Chua, N. H. (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant. Cell. 15, 1347-1359 https://doi.org/10.1105/tpc.009902
  13. Lee, J., Nam, J., Park, H. C., Na, G., Miura, K., Jin, J. B., Yoo, C. Y., Baek, D., Kim, D. H., Jeong, J. C., Kim, D., Lee, S. Y., Salt, D. E., Mengiste, T., Gong, Q., Ma, S., Bohnert, H. J., Kwak, S. S., Bressan, R. A., Hasegawa, P. M. and Yun, D. J. (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant. J. 49, 79-90
  14. Roden, J., Eardley, L., Hotson, A., Cao, Y. and Mudgett, M. B. (2004) Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant. Microbe. Interact. 17, 633-643 https://doi.org/10.1094/MPMI.2004.17.6.633
  15. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L. and Bejarano, E. R. (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758-2769 https://doi.org/10.1128/JVI.78.6.2758-2769.2004
  16. Liu, B. and Shuai, K. (2008) Regulation of the sumoylation system in gene expression. Curr. Opin. Cell. Biol. 20, 288-293 https://doi.org/10.1016/j.ceb.2008.03.014
  17. Bossis, G. and Melchior, F. (2006) SUMO: regulating the regulator. Cell. Div. 1, 13 https://doi.org/10.1186/1747-1028-1-13
  18. Boggio, R., Passafaro, A. and Chiocca, S. (2007) Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J. Biol. Chem. 282, 15376-15382 https://doi.org/10.1074/jbc.M700889200
  19. Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends. Biochem. Sci. 28, 612-618 https://doi.org/10.1016/j.tibs.2003.09.002
  20. Palvimo, J. J. (2007) PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans. 35, 1405-1408 https://doi.org/10.1042/BST0351405
  21. Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169-178 https://doi.org/10.1038/35056563
  22. Mahajan, S. and Tuteja, N. (2005) Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139-158 https://doi.org/10.1016/j.abb.2005.10.018
  23. Xiong, L., Schumaker, K. S. and Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress. Plant. Cell. 14 Suppl, S165-183 https://doi.org/10.1105/tpc.010278
  24. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23, 2947-2948 https://doi.org/10.1093/bioinformatics/btm404
  25. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Ceric, G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. and Bateman, A. (2008) The Pfam protein families database. Nucleic. Acids. Res. 36, D281-288 https://doi.org/10.1093/nar/gkn226
  26. Chaikam, V. and Karlson, D. (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant. Cell. Environ. 31, 995-1006 https://doi.org/10.1111/j.1365-3040.2008.01811.x

Cited by

  1. Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses vol.30, pp.4, 2011, https://doi.org/10.1080/07352689.2011.587725
  2. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice vol.56, pp.12, 2015, https://doi.org/10.1093/pcp/pcv162
  3. Diversification of SUMO-Activating Enzyme in Arabidopsis: Implications in SUMO Conjugation vol.6, pp.5, 2013, https://doi.org/10.1093/mp/sst049
  4. SUMO proteins grapple with biotic and abiotic stresses in Arabidopsis vol.56, pp.2, 2013, https://doi.org/10.1007/s12374-013-0904-x
  5. Emerging role of SUMOylation in plant development vol.8, pp.7, 2013, https://doi.org/10.4161/psb.24727
  6. Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions vol.8, 2017, https://doi.org/10.3389/fpls.2017.01458
  7. Advances in crop proteomics: PTMs of proteins under abiotic stress vol.16, pp.5, 2016, https://doi.org/10.1002/pmic.201500301
  8. Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.235
  9. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms vol.6, 2015, https://doi.org/10.3389/fpls.2015.00057
  10. SUMO, a heavyweight player in plant abiotic stress responses vol.69, pp.19, 2012, https://doi.org/10.1007/s00018-012-1094-2
  11. OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-10274-5
  12. Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.092
  13. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis vol.12, pp.1, 2012, https://doi.org/10.1186/1471-2229-12-187
  14. Regulation of soybean SUMOylation system in response to Phytophthora sojae infection and heat shock pp.1573-5087, 2018, https://doi.org/10.1007/s10725-018-0452-y