DOI QR코드

DOI QR Code

The production and immunostimulatory activity of double-stranded CpG-DNA

  • Park, Byoung-Kwon (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kim, Dong-Bum (Department of Microbiology, College of Medicine, Hallym University) ;
  • Rhee, Jae-Won (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Kim, Min-Soo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Seok, Hyun-Jeong (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Published : 2010.03.31

Abstract

CpG-DNA, which contains unmethylated CpG dinucleotides in the context of specific sequences, has remarkable and diverse immunological effects, including induction of proinflammatory cytokine expression and regulation of the Th1/Th2 immune response. Here, we examined the immunostimulatory activities of double-stranded (ds) CpG-DNA in the human B cell line RPMI8226. To investigate whether dsCpG-DNA stimulates immune cells, we constructed a plasmid containing repeated dsCpG-DNA and produced dsCpG-DNA by PCR amplification and EcoR I digestion. PCR-amplified dsCpG-DNA alone did not have immmunostimulatory activity. However, dsCpGDNA encapsulated with lipofectin induced IL-8 promoter activation, HLA-DRA expression, and IL-8 expression in a CG sequence-independent manner. The effects of encapsulated dsCpGDNA were independent of minor endotoxin contamination. These findings suggest the potential use of dsCpG-DNA as a therapy for immune response regulation.

Keywords

References

  1. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B cell activation. Nature 374, 546-549 https://doi.org/10.1038/374546a0
  2. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 https://doi.org/10.1038/35047123
  3. Krieg, A. M. (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug. Discov. 5, 471-484 https://doi.org/10.1038/nrd2059
  4. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. and Krieg, A. M. (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-$\gamma$. Proc. Natl. Acad. Sci. U.S.A. 93, 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
  5. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760 https://doi.org/10.1146/annurev.immunol.20.100301.064842
  6. Kwon, H. J. and Kim, D. S. (2003) Regulation of macrophage inflammatory protein-2 gene expression in response to oligodeoxynucleotide containing CpG motifs in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 308, 608-613 https://doi.org/10.1016/S0006-291X(03)01434-7
  7. Lee, K. W., Lee, Y., Kim, D. S. and Kwon, H. J. (2006) Direct role of NF-κB activation in Toll-like receptor- triggered HLA-DRA expression. Eur. J. Immunol. 36, 1254-1266 https://doi.org/10.1002/eji.200535577
  8. Zhao, Q., Matson, S., Herrera, C. J., Fisher, E., Yu, H. and Krieg, A. M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53-66 https://doi.org/10.1089/ard.1993.3.53
  9. Stein, C. A., Subasinghe, C., Shinozuka, K. and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acid Res. 16, 3209-3221 https://doi.org/10.1093/nar/16.8.3209
  10. Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J. and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 84, 3660-3666
  11. Stein, C. A. and Cheng, Y. C. (1993) Antisense oligonucleotides as therapeutic agents is the bullet really magical? Science 261, 1004-1012 https://doi.org/10.1126/science.8351515
  12. Stein, C. A. and Krieg, A. M. (1994) Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides [editorial]. Antisense Res. Dev. 4, 67-69 https://doi.org/10.1089/ard.1994.4.67
  13. Sparwasser, T., Hultner, L., Koch, E. S., Luz, A., Lipford, G. B. and Wagner, H. (1999) Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J. Immunol. 162, 2368-2374
  14. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192 https://doi.org/10.1038/nm987
  15. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705 https://doi.org/10.1038/9554
  16. Kim, D., Rhee, J. W., Kwon. S., Sohn, W. J., Lee, Y., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA. Biochem. Biophys. Res. Commmun. 379, 362-367 https://doi.org/10.1016/j.bbrc.2008.12.063
  17. Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118 https://doi.org/10.1016/j.molimm.2005.12.004
  18. Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotides from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793 https://doi.org/10.5483/BMBRep.2006.39.6.788
  19. Janeway, C. A. Jr. and Medzhitov, R. (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349-350 https://doi.org/10.1006/smim.1998.0142
  20. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787 https://doi.org/10.1038/35021228
  21. Ahmad-Nejad, P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M. and Wagner, H. (2002) Bacterial CpGDNA and lipopolysaccharides activate toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958-1968 https://doi.org/10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U
  22. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S. and Wagner, H. (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor associated factor 6 (TRAF6). J. Exp. Med. 192, 595-600 https://doi.org/10.1084/jem.192.4.595
  23. Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G. B., Wagner, H. and Bauer, S. (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541-2550 https://doi.org/10.1002/eji.200425218
  24. Yasuda, K., Rutz, M., Schlatter, B., Metzger, J., Luppa, P. B., Schmitz, F., Haas, T., Heit, A., Bauer, S. and Wagner, H. (2006) CpG motif-independent activation of TLR9 upon endosomal translocation of 'natural' phosphodiester DNA. Eur. J. Immunol. 36, 431-436 https://doi.org/10.1002/eji.200535210
  25. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., Ohba, Y. and Taniguchi, T. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505 https://doi.org/10.1038/nature06013
  26. Yasuda, K., Yu, P., Kirschning, C. J., Schlatter, B., Schmitz, F., Heit, A., Bauer, S., Hochrein, H. and Wagner, H. (2005) Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol. 174, 6129-6136 https://doi.org/10.4049/jimmunol.174.10.6129
  27. Magnusson, M., Tobes, R., Sancho, J. and Pareja, E. (2007) Natural DNA repetitive extragenic sequences from Gramnegative pathogens strongly stimulate TLR9. J. Immunol. 179, 31-35 https://doi.org/10.4049/jimmunol.179.1.31
  28. Lee, S., Kim, Y. J., Kwon, S., Lee, Y., Choi, S. Y., Park, J. and Kwon, H. J. (2009) Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Rep. 42, 265-270 https://doi.org/10.5483/BMBRep.2009.42.5.265