DOI QR코드

DOI QR Code

Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease

  • Seol, Won-Gi (Institute for Brain Science & Technology/Graduate Program of Neuroscience, Inje University)
  • Published : 2010.04.30

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease, and 5-10% of the PD cases are genetically inherited as familial PD (FPD). LRRK2 (leucine-rich repeat kinase 2) was first reported in 2004 as a gene corresponding to PARK8, an autosomal gene whose dominant mutations cause familial PD. LRRK2 contains both active kinase and GTPase domains as well as protein-protein interaction motifs such as LRR (leucine-rich repeat) and WD40. Most pathogenic LRRK2 mutations are located in either the GTPase or kinase domain, implying important roles for the enzymatic activities in PD pathogenic mechanisms. In comparison to other PD causative genes such as parkin and PINK1, LRRK2 exhibits two important features. One is that LRRK2's mutations (especially the G2019S mutation) were observed in sporadic as well as familial PD patients. Another is that, among the various PD-causing genes, pathological characteristics observed in patients carrying LRRK2 mutations are the most similar to patients with sporadic PD. Because of these two observations, LRRK2 has been intensively investigated for its pathogenic mechanism (s) and as a target gene for PD therapeutics. In this review, the general biochemical and molecular features of LRRK2, the recent results of LRRK2 studies and LRRK2's therapeutic potential as a PD target gene will be discussed.

Keywords

References

  1. Olanow, C. W. and Tatton, W. G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123-144 https://doi.org/10.1146/annurev.neuro.22.1.123
  2. Moore, D. J., West, A. B., Dawson, V. L. and Dawson, T. M. (2005) Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57-87 https://doi.org/10.1146/annurev.neuro.28.061604.135718
  3. Thomas, B. and Beal, M. F. (2007) Parkinson's disease. Hum. Mol. Genet. 16 Spec No. 2, R183-R194 https://doi.org/10.1093/hmg/ddm159
  4. Fahn, S. (2006) Levodopa in the treatment of Parkinson's disease. J. Neural. Transm. Suppl. 71, 1-15 https://doi.org/10.1007/978-3-211-33328-0_1
  5. Halpern, C., Hurtig, H., Jaggi, J., Grossman, M., Won, M. and Baltuch, G. (2007) Deep brain stimulation in neurologic disorders. Parkinsonism Relat. Disord. 13, 1-16 https://doi.org/10.1016/j.parkreldis.2006.03.001
  6. Lewthwaite, A. J. and Nicholl, D. J. (2005) Genetics of parkinsonism. Curr. Neurol. Neurosci. Rep. 5, 397-404 https://doi.org/10.1007/s11910-005-0064-6
  7. Belin, A. C. and Westerlund, M. (2008) Parkinson's disease: a genetic perspective. FEBS J. 275, 1377-1383 https://doi.org/10.1111/j.1742-4658.2008.06301.x
  8. Farrer, M., Wavrant-De Vrieze, F., Crook, R., Boles, L., Perez-Tur, J., Hardy, J., Johnson, W. G., Steele, J., Maraganore, D., Gwinn, K. and Lynch, T. (1998) Low frequency of alpha-synuclein mutations in familial Parkinson's disease. Ann. Neurol. 43, 394-397 https://doi.org/10.1002/ana.410430320
  9. Ibanez, P., Bonnet, A. M., Debarges, B., Lohmann, E., Tison, F., Pollak, P., Agid, Y., Durr, A. and Brice, A. (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169-1171 https://doi.org/10.1016/S0140-6736(04)17104-3
  10. Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M. and Destee, A. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167-1169 https://doi.org/10.1016/S0140-6736(04)17103-1
  11. Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D. and Langston, J. W. (2004) Comparison of kindreds with parkinsonism and alphasynuclein genomic multiplications. Ann. Neurol. 55, 174-179 https://doi.org/10.1002/ana.10846
  12. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B. Stoessl, A. J., Pfeiffer, R. F., Patenge,N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K. and Gasser, T. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005
  13. Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W. and Singleton, A. B. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600 https://doi.org/10.1016/j.neuron.2004.10.023
  14. Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., Takeda, A. Tomiyama, H., Nakashima, K., Hasegawa, K., Obata, F., Yoshikawa, T., Kawakami, H., Sakoda, S., Yamamoto, M., Hattori, N., Murata, M., Nakamura, Y. and Toda, T. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303-1307 https://doi.org/10.1038/ng.485
  15. Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S. and Obata, F. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296-301 https://doi.org/10.1002/ana.10113
  16. Bosgraaf, L. and Van Haastert, P. J. (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim. Biophys. Acta. 1643, 5-10 https://doi.org/10.1016/j.bbamcr.2003.08.008
  17. Korr, D., Toschi, L., Donner, P., Pohlenz, H. D., Kreft, B. and Weiss, B. (2006) LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 18, 910-920 https://doi.org/10.1016/j.cellsig.2005.08.015
  18. West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., Dawson, V. L. and Dawson, T. M. (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U.S.A. 102, 16842-16847 https://doi.org/10.1073/pnas.0507360102
  19. Smith, W. W., Pei, Z., Jiang, H., Dawson, V. L., Dawson, T. M. and Ross, C. A. (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231-1233 https://doi.org/10.1038/nn1776
  20. Gandhi, P. N., Chen, S. G. and Wilson-Delfosse, A. L. (2009) Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease. J. Neurosci. Res. 87, 1283-1295 https://doi.org/10.1002/jnr.21949
  21. Lee, S. B., Kim, W., Lee, S. and Chung, J. (2007) Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358, 534-539 https://doi.org/10.1016/j.bbrc.2007.04.156
  22. Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K. and Hisamoto, N. (2007) LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol. 17, 592-598 https://doi.org/10.1016/j.cub.2007.01.074
  23. Simon-Sanchez, J., Herranz-Perez, V., Olucha-Bordonau, F. and Perez-Tur, J. (2006) LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur. J. Neurosci. 23, 659-666 https://doi.org/10.1111/j.1460-9568.2006.04616.x
  24. Melrose, H., Lincoln, S., Tyndall, G., Dickson, D. and Farrer, M. (2006) Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 139, 791-794 https://doi.org/10.1016/j.neuroscience.2006.01.017
  25. Higashi, S., Moore, D. J., Colebrooke, R. E., Biskup, S., Dawson, V. L., Arai, H., Dawson, T. M. and Emson, P. C. (2007) Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J. Neurochem. 100, 363-381
  26. Han, B. S., Iacovitti, L., Katano, T., Hattori, N., Seol, W. and Kim, K. S. (2008) Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci. Lett. 442, 190-194 https://doi.org/10.1016/j.neulet.2008.06.086
  27. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
  28. Unoki, M. and Nakamura, Y. (2001) Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 4457-4465 https://doi.org/10.1038/sj.onc.1204608
  29. Hatano, T., Kubo, S., Imai, S., Maeda, M., Ishikawa, K., Mizuno, Y. and Hattori, N. (2007) Leucine-rich repeat kinase 2 associates with lipid rafts. Hum. Mol. Genet. 16, 678-690 https://doi.org/10.1093/hmg/ddm013
  30. Shin, N., Jeong, H., Kwon, J., Heo, H. Y., Kwon, J. J., Yun, H. J., Kim, C. H., Han, B. S., Tong, Y., Shen, J. Hatano, T., Hattori, N., Kim, K. S., Chang, S. and Seol, W (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 2055-2065 https://doi.org/10.1016/j.yexcr.2008.02.015
  31. Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., Jain, S., Halter, C. A., Michaels, V. E., Reed, T., Rudolph, A., Shults, C. W., Singleton, A. and Foroud, T. (2005) Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 365, 410-412
  32. Di Fonzo, A., Rohe, C. F., Ferreira, J., Chien, H. F., Vacca, L., Stocchi, F., Guedes, L., Fabrizio, E., Manfredi, M., Vanacore, N. Goldwurm, S., Breedveld, G., Sampaio, C., Meco, G., Barbosa, E., Oostra, B. A. and Bonifati, V. (2005) A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365, 412-415
  33. Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., Shaw, K., Bhatia, K. P., Bonifati, V., Quinn, N. P. Lynch, J., Healy, D. G., Holton, J. L., Revesz, T. and Wood, N. W. (2005) A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415-416
  34. Tan, E. K., Zhao, Y., Skipper, L., Tan, M. G., Di Fonzo, A., Sun, L., Fook-Chong, S., Tang, S., Chua, E., Yuen, Y. Tan, L., Pavanni, R., Wong, M. C., Kolatkar, P., Lu, C. S., Bonifati, V. and Liu, J. J. (2007) The LRRK2 Gly2385Arg variant is associated with Parkinson's disease: genetic and functional evidence. Hum. Genet. 120, 857-863 https://doi.org/10.1007/s00439-006-0268-0
  35. Ross, O. A., Wu, Y. R., Lee, M. C., Funayama, M., Chen, M. L., Soto, A. I., Mata, I. F., Lee-Chen, G. J., Chen, C. M., Tang, M., Zhao, Y., Hattori, N., Farrer, M. J., Tan, E. K. and Wu, R. M. (2008) Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Ann. Neurol. 64, 88-92 https://doi.org/10.1002/ana.21405
  36. Healy, D. G., Falchi, M., O'Sullivan, S. S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C. P., Goldwurm, S. Ferreira, J. J., Tolosa, E., Kay, D. M., Klein, C., Williams, D. R., Marras, C., Lang, A. E., Wszolek, Z. K., Berciano, J., Schapira, A. H., Lynch, T., Bhatia, K. P., Gasser, T., Lees, A. J. and Wood, N. W. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583-590 https://doi.org/10.1016/S1474-4422(08)70117-0
  37. Ozelius, L. J., Senthil, G., Saunders-Pullman, R., Ohmann, E., Deligtisch, A., Tagliati, M., Hunt, A. L., Klein, C., Henick, B., Hailpern, S. M., Lipton, R. B., Soto-Valencia, J., Risch, N. and Bressman, S. B. (2006) LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 354, 424-425 https://doi.org/10.1056/NEJMc055509
  38. Saunders-Pullman, R., Lipton, R. B., Senthil, G., Katz, M., Costan-Toth, C., Derby, C., Bressman, S., Verghese, J. and Ozelius, L. J. (2006) Increased frequency of the LRRK2 G2019S mutation in an elderly Ashkenazi Jewish population is not associated with dementia. Neurosci. Lett. 402, 92-96 https://doi.org/10.1016/j.neulet.2006.03.044
  39. Lesage, S., Durr, A., Tazir, M., Lohmann, E., Leutenegger, A. L., Janin, S., Pollak, P. and Brice, A. (2006) LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med. 354, 422-423 https://doi.org/10.1056/NEJMc055540
  40. Hulihan, M. M., Ishihara-Paul, L., Kachergus, J., Warren, L., Amouri, R., Elango, R., Prinjha, R. K., Upmanyu, R., Kefi, M., Zouari, M. Sassi, S. B., Yahmed, S. B., El Euch-Fayeche, G., Matthews, P. M., Middleton, L. T., Gibson, R. A., Hentati, F. and Farrer, M. J. (2008) LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol. 7, 591-594 https://doi.org/10.1016/S1474-4422(08)70116-9
  41. Lesage, S., Patin, E., Condroyer, C., Leutenegger, A. L., Lohmann, E., Giladi, N., Bar-Shira, A., Belarbi, S., Hecham, N., Pollak, P. Ouvrard-Hernandez, A. M., Bardien, S., Carr, J., Benhassine, T., Tomiyama, H., Pirkevi, C., Hamadouche, T., Cazeneuve, C., Basak, A. N., Hattori, N., Durr, A., Tazir, M., Orr-Urtreger, A., Quintana-Murci, L. and Brice, A. (2010) Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum. Mol. Genet. doi:10.1093/hmg/ddq081
  42. Tan, E. K., Tan, L. C., Lim, H. Q., Li, R., Tang, M., Yih, Y., Pavanni, R., Prakash, K. M., Fook-Chong, S. and Zhao, Y. (2008) LRRK2 R1628P increases risk of Parkinson's disease: replication evidence. Hum. Genet. 124, 287-288 https://doi.org/10.1007/s00439-008-0544-2
  43. Mata, I. F., Kachergus, J. M., Taylor, J. P., Lincoln, S., Aasly, J., Lynch, T., Hulihan, M. M., Cobb, S. A., Wu, R. M., Lu, C. S., Lahoz, C., Wszolek, Z. K. and Farrer, M. J. (2005) Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 6, 171-177 https://doi.org/10.1007/s10048-005-0005-1
  44. Kay, D. M., Kramer, P., Higgins, D., Zabetian, C. P. and Payami, H. (2005) Escaping Parkinson's disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov. Disord. 20, 1077-1078 https://doi.org/10.1002/mds.20618
  45. Golub, Y., Berg, D., Calne, D. B., Pfeiffer, R. F., Uitti, R. J., Stoessl, A. J., Wszolek, Z. K., Farrer, M. J., Mueller, J. C., Gasser, T. and Fuchs, J. (2009) Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat. Disord. 15, 539-541
  46. Haugarvoll, K., Rademakers, R., Kachergus, J. M., Nuytemans, K., Ross, O. A., Gibson, J. M., Tan, E. K., Gaig, C., Tolosa, E., Goldwurm, S. Guidi, M., Riboldazzi, G., Brown, L., Walter, U., Benecke, R., Berg, D., Gasser, T., Theuns, J., Pals, P., Cras, P., De Deyn, P. P., Engelborghs, S., Pickut, B., Uitti, R. J., Foroud, T., Nichols, W. C., Hagenah, J., Klein, C., Samii, A., Zabetian, C. P., Bonifati, V., Van Broeckhoven, C., Farrer, M. J. and Wszolek, Z. K. (2008) Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology 70, 1456-1460 https://doi.org/10.1212/01.wnl.0000304044.22253.03
  47. Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A. and Alessi, D. R. (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J. 405, 307-317 https://doi.org/10.1042/BJ20070209
  48. West, A. B., Moore, D. J., Choi, C., Andrabi, S. A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K. L., Dawson, V. L. and Dawson, T. M. (2007) Parkinson's diseaseassociated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223-232 https://doi.org/10.1093/hmg/ddl471
  49. MacLeod, D., Dowman, J., Hammond, R., Leete, T., Inoue, K. and Abeliovich, A. (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52, 587-593 https://doi.org/10.1016/j.neuron.2006.10.008
  50. Melrose, H. (2008) Update on the functional biology of Lrrk2. Future Neurol. 3, 669-681 https://doi.org/10.2217/14796708.3.6.669
  51. Greggio, E. and Cookson, M. R. (2009) Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 1, e00002
  52. Bretscher, A., Edwards, K. and Fehon, R. G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell. Biol. 3, 586-599 https://doi.org/10.1038/nrm882
  53. Parisiadou, L., Xie, C., Cho, H. J., Lin, X., Gu, X. L., Long, C. X., Lobbestael, E., Baekelandt, V., Taymans, J. M., Sun, L. and Cai, H. (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. 29, 13971-13980 https://doi.org/10.1523/JNEUROSCI.3799-09.2009
  54. Gillardon, F. (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability - a point of convergence in Parkinsonian neurodegeneration? J. Neurochem. 110, 1514-1522 https://doi.org/10.1111/j.1471-4159.2009.06235.x
  55. Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E. and Lu, B. (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432-2443 https://doi.org/10.1038/emboj.2008.163
  56. Tain, L. S., Mortiboys, H., Tao, R. N., Ziviani, E., Bandmann, O. and Whitworth, A. J. (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 12, 1129-1135 https://doi.org/10.1038/nn.2372
  57. Kumar, A., Greggio, E., Beilina, A., Kaganovich, A., Chan, D., Taymans, J. M., Wolozin, B. and Cookson, M. R. (2010) The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS One 5, e8730 https://doi.org/10.1371/journal.pone.0008730
  58. Gloeckner, C. J., Schumacher, A., Boldt, K. and Ueffing, M. (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109, 959-968 https://doi.org/10.1111/j.1471-4159.2009.06024.x
  59. Hsu, C. H., Chan, D., Greggio, E., Saha, S., Guillily, M. D., Ferree, A., Raghavan, K., Shen, G. C., Segal, L., Ryu, H., Cookson, M. R. and Wolozin, B. (2010) MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 1593-1604 https://doi.org/10.1111/j.1471-4159.2010.06568.x
  60. Kamikawaji, S., Ito, G. and Iwatsubo, T. (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48, 10963-10975 https://doi.org/10.1021/bi9011379
  61. Nichols, R. J., Dzamko, N., Hutti, J. E., Cantley, L. C., Deak, M., Moran, J., Bamborough, P., Reith, A. D. and Alessi, D. R. (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochem. J. 424, 47-60 https://doi.org/10.1042/BJ20091035
  62. Narumiya, S. (1996) The small GTPase Rho: cellular functions and signal transduction. J. Biochem. 120, 215-228 https://doi.org/10.1093/oxfordjournals.jbchem.a021401
  63. Li, X., Tan, Y. C., Poulose, S., Olanow, C. W., Huang, X. Y. and Yue, Z. (2007) Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J. Neurochem. 103, 238-247
  64. Guo, L., Gandhi, P. N., Wang, W., Petersen, R. B., Wilson-Delfosse, A. L. and Chen, S. G. (2007) The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658-3670 https://doi.org/10.1016/j.yexcr.2007.07.007
  65. Lewis, P. A., Greggio, E., Beilina, A., Jain, S., Baker, A. and Cookson, M. R. (2007) The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Commun. 357, 668-671
  66. Deng, J., Lewis, P. A., Greggio, E., Sluch, E., Beilina, A. and Cookson, M. R. (2008) Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl. Acad. Sci. U.S.A. 105, 1499-1504 https://doi.org/10.1073/pnas.0709098105
  67. Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T. and Iwatsubo, T. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 1380-1388 https://doi.org/10.1021/bi061960m
  68. Liu, M., Dobson, B., Glicksman, M. A., Yue, Z. and Stein, R. L. (2010) Kinetic mechanistic studies of wild-type leucine-rich repeat kinase2: characterization of the kinase and GTPase activities. Biochemistry 49, 2008-2017 https://doi.org/10.1021/bi901851y
  69. Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M. P., Beilina, A., Blackinton, J., Thomas, K. J. Ahmad, R., Miller, D. W., Kesavapany, S., Singleton, A., Lees, A., Harvey, R. J., Harvey, K. and Cookson, M. R. (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329-341 https://doi.org/10.1016/j.nbd.2006.04.001
  70. Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. and Wittinghofer, A. (2009) It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423-429 https://doi.org/10.1038/nrm2689
  71. Sen, S., Webber, P. J. and West, A. B. (2009) Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem. 284, 36346-36356 https://doi.org/10.1074/jbc.M109.025437
  72. Greggio, E., Zambrano, I., Kaganovich, A., Beilina, A., Taymans, J. M., Daniels, V., Lewis, P., Jain, S., Ding, J., Syed, A., Thomas, K. J., Baekelandt, V. and Cookson, M. R. (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906-16914 https://doi.org/10.1074/jbc.M708718200
  73. Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G. and Wilson-Delfosse, A. L. (2008) The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res. 86, 1711-1720 https://doi.org/10.1002/jnr.21622
  74. Dachsel, J. C., Taylor, J. P., Mok, S. S., Ross, O. A., Hinkle, K. M., Bailey, R. M., Hines, J. H., Szutu, J., Madden, B., Petrucelli, L. and Farrer, M. J. (2007) Identification of potential protein interactors of Lrrk2. Parkinsonism Relat. Disord. 13, 382-385 https://doi.org/10.1016/j.parkreldis.2007.01.008
  75. Wang, L., Xie, C., Greggio, E., Parisiadou, L., Shim, H., Sun, L., Chandran, J., Lin, X., Lai, C., Yang, W. J. Moore, D. J., Dawson, T. M., Dawson, V. L., Chiosis, G., Cookson, M. R. and Cai, H. (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J. Neurosci. 28, 3384-3391 https://doi.org/10.1523/JNEUROSCI.0185-08.2008
  76. Ko, H. S., Bailey, R., Smith, W. W., Liu, Z., Shin, J. H., Lee, Y. I., Zhang, Y. J., Jiang, H., Ross, C. A., Moore, D. J. Patterson, C., Petrucelli, L., Dawson, T. M. and Dawson, V. L. (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl. Acad. Sci. U.S.A. 106, 2897-2902 https://doi.org/10.1073/pnas.0810123106
  77. Ding, X. and Goldberg, M. S. (2009) Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 4, e5949 https://doi.org/10.1371/journal.pone.0005949
  78. Ohta, E., Katayama, Y., Kawakami, F., Yamamoto, M., Tajima, K., Maekawa, T., Iida, N., Hattori, S. and Obata, F. (2009) I(2020)T leucine-rich repeat kinase 2, the causative mutant molecule of familial Parkinson's disease, has a higher intracellular degradation rate than the wildtype molecule. Biochem. Biophys. Res. Commun. 390, 710-715 https://doi.org/10.1016/j.bbrc.2009.10.034
  79. Ohta, E., Kubo, M. and Obata, F. (2010) Prevention of intracellular degradation of I2020T mutant LRRK2 restores its protectivity against apoptosis. Biochem. Biophys. Res. Commun. 391, 242-247 https://doi.org/10.1016/j.bbrc.2009.11.043
  80. Ho, C. C., Rideout, H. J., Ribe, E., Troy, C. M. and Dauer, W. T. (2009) The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J. Neurosci. 29, 1011-1016 https://doi.org/10.1523/JNEUROSCI.5175-08.2009
  81. Sancho, R. M., Law, B. M. and Harvey, K. (2009) Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum. Mol. Genet. 18, 3955-3968 https://doi.org/10.1093/hmg/ddp337
  82. Smith, W. W., Pei, Z., Jiang, H., Moore, D. J., Liang, Y., West, A. B., Dawson, V. L., Dawson, T. M. and Ross, C. A. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. U.S.A. 102, 18676-18681 https://doi.org/10.1073/pnas.0508052102
  83. Venderova, K., Kabbach, G., Abdel-Messih, E., Zhang, Y., Parks, R. J., Imai, Y., Gehrke, S., Ngsee, J., Lavoie, M. J., Slack, R. S. Rao, Y., Zhang, Z., Lu, B., Haque, M. E. and Park, D. S. (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum. Mol. Genet. 18, 4390-4404 https://doi.org/10.1093/hmg/ddp394
  84. Samann, J., Hegermann, J., von Gromoff, E., Eimer, S., Baumeister, R. and Schmidt, E. (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem. 284, 16482-16491 https://doi.org/10.1074/jbc.M808255200
  85. Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J. Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z. and Cai, H. (2009) Leucinerich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64, 807-827 https://doi.org/10.1016/j.neuron.2009.11.006
  86. Ng, C. H., Mok, S. Z., Koh, C., Ouyang, X., Fivaz, M. L., Tan, E. K., Dawson, V. L., Dawson, T. M., Yu, F. and Lim, K. L. (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29, 11257-11162 https://doi.org/10.1523/JNEUROSCI.2375-09.2009
  87. Plowey, E. D., Cherra, S. J., 3rd, Liu, Y. J. and Chu, C. T. (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048-1056 https://doi.org/10.1111/j.1471-4159.2008.05217.x
  88. Liou, A. K., Leak, R. K., Li, L. and Zigmond, M. J. (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol. Dis. 32, 116-124 https://doi.org/10.1016/j.nbd.2008.06.016
  89. Heo, H. Y., Park, J. M., Kim, C. H., Han, B. S., Kim, K. S. and Seol, W. (2010) LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp. Cell Res. 316, 649-656 https://doi.org/10.1016/j.yexcr.2009.09.014
  90. Alegre-Abarrategui, J., Christian, H., Lufino, M., Mutihac, R., Lourenco Venda, L., Ansorge, O. and Wade-Martins, R. (2009) LRRK2 regulates autophagic activity and localises to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18, 4022-4033 https://doi.org/10.1093/hmg/ddp346
  91. Iaccarino, C., Crosio, C., Vitale, C., Sanna, G., Carri, M. T. and Barone, P. (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16, 1319-1326 https://doi.org/10.1093/hmg/ddm080
  92. Carballo-Carbajal, I., Weber-Endress, S., Rovelli, G., Chan, D., Wolozin, B., Klein, C. L., Patenge, N., Gasser, T. and Kahle, P. J. (2010) Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22, 821-827 https://doi.org/10.1016/j.cellsig.2010.01.006
  93. Li, Y., Liu, W., Oo, T. F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou, C., Geghman, K., Bogdanov, M., Przedborski, S., Beal, M. F., Burke, R. E. and Li, C. (2009) Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12, 826-828 https://doi.org/10.1038/nn.2349
  94. Tong, Y., Pisani, A., Martella, G., Karouani, M., Yamaguchi, H., Pothos, E. N. and Shen, J. (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc. Natl. Acad. Sci. U.S.A. 106, 14622-14627 https://doi.org/10.1073/pnas.0906334106
  95. Li, X., Patel, J. C., Wang, J., Avshalumov, M. V., Nicholson, C., Buxbaum, J. D., Elder, G. A., Rice, M. E. and Yue, Z. (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30, 1788-1797 https://doi.org/10.1523/JNEUROSCI.5604-09.2010
  96. Saha, S., Guillily, M. D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C. H., Segal, L., Raghavan, K., Matsumoto, K. Matsumoto, K., Hisamoto, N., Kuwahara, T., Iwatsubo, T., Moore, L., Goldstein, L., Cookson, M. and Wolozin, B. (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J. Neurosci. 29, 9210-9218 https://doi.org/10.1523/JNEUROSCI.2281-09.2009
  97. Wang, D., Tang, B., Zhao, G., Pan, Q., Xia, K., Bodmer, R. and Zhang, Z. (2008) Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol. Neurodegener. 3, 3 https://doi.org/10.1186/1750-1326-3-3
  98. Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T. Ross, C. A., Montell, C. and Smith, W. W. (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 105, 2693-2698 https://doi.org/10.1073/pnas.0708452105
  99. White, L. R., Toft, M., Kvam, S. N., Farrer, M. J. and Aasly, J. O. (2007) MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease. J. Neurosci. Res. 85, 1288-1294 https://doi.org/10.1002/jnr.21240
  100. Mutez, E., Larvor, L., Lepretre, F., Mouroux, V., Hamalek, D., Kerckaert, J. P., Perez-Tur, J., Waucquier, N., Vanbesien-Mailliot, C., Duflot, A., Devos, D., Defebvre, L., Kreisler, A., Frigard, B., Destee, A. and Chartier- Harlin, M. C. (2010) Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiol. Aging. doi:10.1016/j.neurobiolaging. 2009.10.016
  101. Johansen, K. K., Wang, L., Aasly, J. O., White, L. R., Matson, W. R., Henchcliffe, C., Beal, M. F. and Bogdanov, M. (2009) Metabolomic profiling in LRRK2-related Parkinson's disease. PLoS One 4, e7551 https://doi.org/10.1371/journal.pone.0007551
  102. Church, W. H. and Ward, V. L. (1994) Uric acid is reduced in the substantia nigra in Parkinson's disease: effect on dopamine oxidation. Brain Res. Bull. 33, 419-425 https://doi.org/10.1016/0361-9230(94)90285-2
  103. Covy, J. P. and Giasson, B. I. (2009) Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem. Biophys. Res. Commun. 378, 473-477 https://doi.org/10.1016/j.bbrc.2008.11.048
  104. Yue, Z. (2009) LRRK2 in Parkinson's disease: in vivo models and approaches for understanding pathogenic roles. FEBS J. 276, 6445-6454 https://doi.org/10.1111/j.1742-4658.2009.07343.x
  105. Webber, P. J. and West, A. B. (2009) LRRK2 in Parkinson's disease: function in cells and neurodegeneration. FEBS J. 276, 6436-6444 https://doi.org/10.1111/j.1742-4658.2009.07342.x
  106. Kumari, U. and Tan, E. K. (2009) LRRK2 in Parkinson's disease: genetic and clinical studies from patients. FEBS J. 276, 6455-6463 https://doi.org/10.1111/j.1742-4658.2009.07344.x
  107. Braithwaite, S. P. (2009) LRRK2 in Parkinson's disease:building an understanding of disease etiology. FEBS J. 276, 6427 https://doi.org/10.1111/j.1742-4658.2009.07340.x
  108. Anand, V. S. and Braithwaite, S. P. (2009) LRRK2 in Parkinson's disease: biochemical functions. FEBS J. 276, 6428-6435 https://doi.org/10.1111/j.1742-4658.2009.07341.x
  109. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R. Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I. and Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045
  110. Gasser, T., Muller-Myhsok, B., Wszolek, Z. K., Oehlmann, R., Calne, D. B., Bonifati, V., Bereznai, B., Fabrizio, E., Vieregge, P. and Horstmann, R. D. (1998) A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat. Genet. 18, 262-265 https://doi.org/10.1038/ng0398-262
  111. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P. J., Wilkinson, K. D. and Polymeropoulos, M. H. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395, 451-452 https://doi.org/10.1038/26652
  112. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G. and Wood, N. W. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
  113. Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M. van Dongen, J. W., Vanacore, N., van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A. and Heutink, P. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259 https://doi.org/10.1126/science.1077209
  114. Ramirez, A., Heimbach, A., Grundemann, J., Stiller, B., Hampshire, D., Cid, L. P., Goebel, I., Mubaidin, A. F., Wriekat, A. L., Roeper, J. Al-Din, A., Hillmer, A. M., Karsak, M., Liss, B., Woods, C. G., Behrens, M. I. and Kubisch, C. (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184-1191 https://doi.org/10.1038/ng1884
  115. Li, Y. J., Scott, W. K., Hedges, D. J., Zhang, F., Gaskell, P. C., Nance, M. A., Watts, R. L., Hubble, J. P., Koller, W.C., Pahwa, R., Stern, M. B., Hiner, B. C., Jankovic, J., Allen, F. A., Jr., Goetz, C. G., Mastaglia, F., Stajich, J. M., Gibson, R. A., Middleton, L. T., Saunders, A. M., Scott, B. L., Small, G. W., Nicodemus, K. K., Reed, A. D., Schmechel, D. E., Welsh-Bohmer, K. A., Conneally, P. M., Roses, A. D., Gilbert, J. R., Vance, J. M., Haines, J. L. and Pericak-Vance, M. A. (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet. 70, 985-993 https://doi.org/10.1086/339815
  116. Lautier, C., Goldwurm, S., Durr, A., Giovannone, B., Tsiaras, W. G., Pezzoli, G., Brice, A. and Smith, R. J. (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am. J. Hum. Genet. 82, 822-833 https://doi.org/10.1016/j.ajhg.2008.01.015
  117. Pankratz, N., Nichols, W. C., Uniacke, S. K., Halter, C., Rudolph, A., Shults, C., Conneally, P. M. and Foroud, T. (2002) Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am. J. Hum. Genet. 71, 124-135 https://doi.org/10.1086/341282
  118. Strauss, K. M., Martins, L. M., Plun-Favreau, H., Marx, F. P., Kautzmann, S., Berg, D., Gasser, T., Wszolek, Z., Muller, T., Bornemann, A. Wolburg, H., Downward, J., Riess, O., Schulz, J. B. and Kruger, R. (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14, 2099-2111 https://doi.org/10.1093/hmg/ddi215
  119. Paisan-Ruiz, C., Bhatia, K. P., Li, A., Hernandez, D., Davis, M., Wood, N. W., Hardy, J., Houlden, H., Singleton, A. and Schneider, S. A. (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 65, 19-23 https://doi.org/10.1002/ana.21656
  120. Shojaee, S., Sina, F., Banihosseini, S. S., Kazemi, M. H., Kalhor, R., Shahidi, G. A., Fakhrai-Rad, H., Ronaghi, M. and Elahi, E. (2008) Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet. 82, 1375-1384 https://doi.org/10.1016/j.ajhg.2008.05.005
  121. Di Fonzo, A., Dekker, M. C., Montagna, P., Baruzzi, A., Yonova, E. H., Correia Guedes, L., Szczerbinska, A., Zhao, T., Dubbel-Hulsman, L. O., Wouters, C. H. de Graaff, E. Oyen, W. J., Simons, E. J., Breedveld, G. J., Oostra, B. A., Horstink, M. W. and Bonifati, V. (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240-245 https://doi.org/10.1212/01.wnl.0000338144.10967.2b
  122. Healy, D. G., Abou-Sleiman, P. M., Casas, J. P., Ahmadi, K. R., Lynch, T., Gandhi, S., Muqit, M. M., Foltynie, T., Barker, R., Bhatia, K. P. Quinn, N. P., Lees, A. J., Gibson, J. M., Holton, J. L., Revesz, T., Goldstein, D. B. and Wood, N. W. (2006) UCHL-1 is not a Parkinson's disease susceptibility gene. Ann. Neurol. 59, 627-633 https://doi.org/10.1002/ana.20757
  123. Nichols, W. C., Kissell, D. K., Pankratz, N., Pauciulo, M. W., Elsaesser, V. E., Clark, K. A., Halter, C. A., Rudolph, A., Wojcieszek, J., Pfeiffer, R.F. and Foroud, T. (2009) Variation in GIGYF2 is not associated with Parkinson disease. Neurology 72, 1886-1892 https://doi.org/10.1212/01.wnl.0000346517.98982.1b
  124. Vilarino-Guell, C., Ross, O. A., Soto, A. I., Farrer, M. J., Haugarvoll, K., Aasly, J. O., Uitti, R. J. and Wszolek, Z. K. (2009) Reported mutations in GIGYF2 are not a common cause of Parkinson's disease. Mov. Disord. 24, 619-620 https://doi.org/10.1002/mds.22451

Cited by

  1. Leucine-rich repeats containing protein functions in the antibacterial immune reaction in stomach of kuruma shrimp Marsupenaeus japonicus vol.61, 2017, https://doi.org/10.1016/j.fsi.2016.12.029
  2. Mitochondrial dysfunction in Parkinson’s disease vol.5, pp.4, 2011, https://doi.org/10.1134/S1990750811040032
  3. Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease vol.83, pp.2, 2014, https://doi.org/10.1016/j.mehy.2014.04.029
  4. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation 2016, https://doi.org/10.1093/hmg/ddw363
  5. LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: Impairment of the kinase activity by Parkinson's disease-associated mutations vol.585, pp.14, 2011, https://doi.org/10.1016/j.febslet.2011.05.044
  6. Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 – 2013) vol.24, pp.7, 2014, https://doi.org/10.1517/13543776.2014.907275
  7. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21WAF1/CIP1 expression vol.8, pp.1, 2015, https://doi.org/10.1186/s13041-015-0145-7
  8. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25 vol.45, pp.8, 2013, https://doi.org/10.1038/emm.2013.68
  9. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond vol.24, pp.19, 2014, https://doi.org/10.1016/j.bmcl.2014.08.049
  10. Structural and functional in silico analysis of LRRK2 missense substitutions vol.41, pp.4, 2014, https://doi.org/10.1007/s11033-014-3111-z
  11. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein vol.9, pp.1, 2012, https://doi.org/10.1186/1742-2094-9-261
  12. Widespread microRNA dysregulation in multiple system atrophy - disease-related alteration in miR-96 vol.39, pp.6, 2014, https://doi.org/10.1111/ejn.12444
  13. Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3 vol.111, pp.1, 2014, https://doi.org/10.1073/pnas.1312701111
  14. Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.234
  15. Increased DJ-1 in Urine Exosome of Korean Males with Parkinson’s Disease vol.2014, 2014, https://doi.org/10.1155/2014/704678
  16. RIP kinases: key decision makers in cell death and innate immunity vol.22, pp.2, 2015, https://doi.org/10.1038/cdd.2014.126
  17. The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson’s Disease from the Han Population of Chinese Mainland vol.53, pp.10, 2016, https://doi.org/10.1007/s12035-015-9595-2
  18. Current understanding of LRRK2 in Parkinson’s disease: biochemical and structural features and inhibitor design vol.4, pp.13, 2012, https://doi.org/10.4155/fmc.12.110
  19. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease vol.49, pp.3, 2017, https://doi.org/10.1038/emm.2016.159
  20. LRRK2, a puzzling protein: Insights into Parkinson's disease pathogenesis vol.261, 2014, https://doi.org/10.1016/j.expneurol.2014.05.025
  21. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity vol.2016, 2016, https://doi.org/10.1155/2016/7917128
  22. Small Molecule Kinase Inhibitors for LRRK2 and Their Application to Parkinson's Disease Models vol.3, pp.3, 2012, https://doi.org/10.1021/cn200117j
  23. LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase pp.02636484, 2018, https://doi.org/10.1002/cbf.3364
  24. Identification of key target genes and biological pathways in multiple sclerosis brains using microarray data obtained from the Gene Expression Omnibus database vol.40, pp.10, 2018, https://doi.org/10.1080/01616412.2018.1497253
  25. Effect of leucine-rich repeat kinase 2 (LRRK2) on protein synthesis vol.22, pp.1, 2018, https://doi.org/10.1080/19768354.2017.1422803
  26. Characterization of Parkinson’s disease-related pathogenic TMEM230 mutants vol.22, pp.2, 2018, https://doi.org/10.1080/19768354.2018.1453545