DOI QR코드

DOI QR Code

Reaction of ferritin with hydrogen peroxide induces lipid peroxidation

  • Published : 2010.03.31

Abstract

Lipid peroxidation is known to be an important factor in the pathologies of many diseases associated with oxidative stress. We assessed the lipid peroxidation induced by the reaction of ferritin with $H_2O_2$. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with ferritin and $H_2O_2$, lipid peroxidation increased in the presence of ferritin and $H_2O_2$ in a concentration-dependent manner. The hydroxyl radical scavengers, azide and thiourea, prevented lipid peroxidation induced by the ferritin/$H_2O_2$ system. The iron specific chelator desferoxamine also prevented ferritin/$H_2O_2$ systemmediated lipid peroxidation. These results demonstrate the possible role of iron in ferritin/$H_2O_2$ system-mediated lipid peroxidation. Carnosine is involved in many cellular defense processes, including free radical detoxification. In this study, carnosine, homocarnosine, and anserine were shown to significantly prevent ferritin/$H_2O_2$ system-mediated lipid peroxidation and also inhibited the free radical-generation activity of ferritin. These results indicated that carnosine and related compounds may prevent ferritin/$H_2O_2$ system-mediated lipid peroxidation via free radical scavenging.

Keywords

References

  1. Papanikolaou, G. and Pantopoulos, K. (2005) Iron metabolism and toxicity. Toxicol. Appl. Paharmacol. 202, 199-211 https://doi.org/10.1016/j.taap.2004.06.021
  2. Munro, H. N. and Linder, M. C. (1978) Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol. Rev. 58, 317-396 https://doi.org/10.1152/physrev.1978.58.2.317
  3. Aisen, P. and Listowsky, I. (1980) Iron transport and storage proteins. Annu. Rev. Biochem. 49, 357-393 https://doi.org/10.1146/annurev.bi.49.070180.002041
  4. Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A. and Arosio, P. (1993) Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem. 268, 12744-12748
  5. Dutra, F., Araki, D. and Bechara, E. J. (2003) Aminoacetone induces loss of ferritin ferroxidase and iron uptake activities. Free Radic. Res. 37, 1113-1121 https://doi.org/10.1080/10715760310001604116
  6. Pamplona, R. (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim. Brophys. Acta. 1777, 1249-1262 https://doi.org/10.1016/j.bbabio.2008.07.003
  7. Boyer, R. F., Grabill, T. W. and Petrovich, R. M. (1988) Reductive release of ferritin iron: a kinetic assay. Anal. Biochem. 174, 17-22 https://doi.org/10.1016/0003-2697(88)90513-1
  8. Monteiro, H. P. and Winterbourn, C. C. (1988) The superoxide- dependent transfer of iron from ferritin to transferrin and lactoferrin. Biochem. J. 256, 923-928 https://doi.org/10.1042/bj2560923
  9. Gotz, M. E., Kunig, G., Riederer, P. and Youdim, M. B. (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. 63, 37-122 https://doi.org/10.1016/0163-7258(94)90055-8
  10. Puntarulo, S. (2005) Iron, oxidative stress and human health. Mol. Aspects. Med. 26, 299-312 https://doi.org/10.1016/j.mam.2005.07.001
  11. Halliwell, B. and Gutteridge, J. M. C. (2007) Free Radicals in Biology and Medicine (Founh Edition); Oxford University Press, UK
  12. Valko, M., Morris, H. and Cronin, M. T. (2005) Metals, toxicity and oxidative stress. Curr. Med. Chem. 12, 1161-1208 https://doi.org/10.2174/0929867053764635
  13. Ganguli, A., Kohli, H. S., Khullar, M., Lal Gupta, K., Jha, V. and Sakhuja, V. (2009) Lipid peroxidation products formation with various iron preparations in chronic kidney disease. Ren. Fail. 31, 106-110 https://doi.org/10.1080/08860220802599106
  14. Ong, W. Y., Jenner, A. M., Pan, N., Ong, C. N. and Halliwell, C. N, B. (2009) Elevated oxidative stress, iron accumulation around microvessels and increased 4-hydroxynonenal immunostaining in Zone 1 of the liver acinus in hypercholesterolemic rabbits. Free Radic. Res. 43, 241-249 https://doi.org/10.1080/10715760802691455
  15. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. and Witztum, J. L. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915-924 https://doi.org/10.1056/NEJM198904063201407
  16. Schwartz, C. J., Valente, A. J., Sprague, E. A., Kelley, J. L. and Nerem, R. M. (1991) The pathogenesis of atherosclerosis: an overview. Clin. Cardiol. 14, 1-16
  17. Hayashi, M. (2009) Oxidative stress in developmental brain disorders. Neuropathology 29, 1-8 https://doi.org/10.1111/j.1440-1789.2008.00888.x
  18. Dalle-Donne, I. Giustrini, D., Colombo, R., Rossi, R. and Milzani, A. (2003) Protein carbonylation in human diseases. Trends Mol. Med. 9, 169-176 https://doi.org/10.1016/S1471-4914(03)00031-5
  19. Petersen, D. R. and Doorn, J. A. (2004) Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic. Biol. Med. 37, 937-945 https://doi.org/10.1016/j.freeradbiomed.2004.06.012
  20. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free radicals, metals and antioxidants in oxidative Stress-induced cancer. Chem. Biol. Interact. 160, 1-40 https://doi.org/10.1016/j.cbi.2005.12.009
  21. Smith, D. G., Cappai, R. and Barnham, K. J. (2007) The redox Chemistry of the alzheimer’s disease amyloid beta peptide. Biochim. Biophys. Acta. 1768, 1976-1990 https://doi.org/10.1016/j.bbamem.2007.02.002
  22. Kim, N. H., Jeong, M. S., Choi, S. Y., Kang, J. H. (2006) Oxidative modification of cytochrome c by hydrogen peroxide. Mol. Cells. 22, 220-227
  23. Catala, A. (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids. 157, 1-11 https://doi.org/10.1016/j.chemphyslip.2008.09.004
  24. Uchida, K. (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318-343 https://doi.org/10.1016/S0163-7827(03)00014-6
  25. Echtay, K. S., Pakay, J. L., Esteves, T. C. and Brand, M. D. (2005) Hydroxynonenal and uncoupling proteins : a model for protection against oxidative damage. Biofactor. 24, 119-130 https://doi.org/10.1002/biof.5520240114
  26. Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames, B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179 https://doi.org/10.1073/pnas.85.9.3175
  27. O'Dowd, J. J., Robins, D. J. and Miller, D. J. (1988) Detection, characterisation, and quantification of carnosine and other histidyl derivatives in cardiac and skeletal muscle. Biochem. Biophys. Acta. 967, 241-249 https://doi.org/10.1016/0304-4165(88)90015-3
  28. Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. B. 89, 245-250 https://doi.org/10.1016/0305-0491(88)90218-0
  29. Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR-spin trapping studies of the hydroxyl radical scavenging activity of carnosine and dipeptides. J. Agric. Food Chem. 42, 1407-1410 https://doi.org/10.1021/jf00043a003
  30. Yanai, N., Shiotani, S., Hagiwara, S., Nabetani, H. and Nakajima, M. (2008) Antioxidant combination inhibits reactive species mediated damage. Biosci. Biotechnol. Biochem. 72, 3100-3106 https://doi.org/10.1271/bbb.80159
  31. Lacy, F., Kailasam, M. T., O`Connor, D. T., Schmid-Schonbein, G. W. and Parmer, R. J. (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension. 36, 878-884 https://doi.org/10.1161/01.HYP.36.5.878
  32. Lacy, F., O'Connor, D. T. and Schmid-Schonbein, G. W. (1998) Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J. Hypertens. 16, 291-303 https://doi.org/10.1097/00004872-199816030-00006
  33. Drog, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95 https://doi.org/10.1152/physrev.00018.2001
  34. Horoz, M., Bolukbas, C., Bolukbas, F. F., Aslan, M., Koylu, A. O., Selek, S. and Erelo, O. (2006) Oxidative stress in hepatitis C infected end-stage renal disease subjects. BMC Infect. Dis. 6, 114 https://doi.org/10.1186/1471-2334-6-114
  35. Hyslop, P. A., Zhang, Z., Pearson, D. V. and Phebus, L. A. (1995) Measurement of striatal $H_2O_2$ by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of $H_2O_2$ in vitro. Brain Res. 671, 181-186 https://doi.org/10.1016/0006-8993(94)01291-O
  36. Gius, D. and Spitz, D. R. (2006) Redox signaling in cancer biology. Antioxid. Redox. Signal. 8, 1249-1252 https://doi.org/10.1089/ars.2006.8.1249
  37. Behl, C., Davis, J. B., Lesley, R. and Schubert, D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 77, 817-827 https://doi.org/10.1016/0092-8674(94)90131-7
  38. Matsuura, E., Hughes, G. R. and Khamashta, M. A. (2008) Oxidation of LDL and its clinical implication. Autoimmun Rev. 7, 558-566 https://doi.org/10.1016/j.autrev.2008.04.018
  39. Motoyama, T., Miki, M., Mino, M., Takahashi, M. and Niki, E. (1989) Synergistic inhibition of oxidation in dispersed phosphatidylcholine liposomes by a combination of vitamin E and cysteine. Arch. Biochem. Biophys. 270, 655-661 https://doi.org/10.1016/0003-9861(89)90548-1
  40. Gutteridge, J. M. and Halliwell, B. (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15, 129-135 https://doi.org/10.1016/0968-0004(90)90206-Q
  41. Radi, R., Thomson, L., Rubbo, H. and Prodanov, E. (1991) Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch. Biochem. Biophys. 288, 112-117 https://doi.org/10.1016/0003-9861(91)90171-E

Cited by

  1. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4 vol.7, 2017, https://doi.org/10.1038/srep43225
  2. Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc vol.88, pp.17, 2016, https://doi.org/10.1021/acs.analchem.6b01945
  3. Direct evidence for non-specific peroxidase activity of ‘‘ferritin–heme” complex: possible role in the development of neurodegenerative diseases vol.12, pp.5, 2015, https://doi.org/10.1007/s13738-014-0538-z
  4. Genome-Wide Microarrray Analysis Reveals Roles for the REF-1 Family Member HLH-29 in Ferritin Synthesis and Peroxide Stress Response vol.8, pp.3, 2013, https://doi.org/10.1371/journal.pone.0059719
  5. The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart vol.34, pp.4, 2015, https://doi.org/10.3109/15368378.2014.952742
  6. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans vol.5, pp.2, 2015, https://doi.org/10.3390/biom5020702
  7. Influence of l-carnosine on pro-antioxidant status in elite kayakers and canoeists vol.101, pp.4, 2014, https://doi.org/10.1556/APhysiol.101.2014.008
  8. Ascorbic acid induced degradation of beta-glucan: Hydroxyl radicals as intermediates studied by spin trapping and electron spin resonance spectroscopy vol.87, pp.3, 2012, https://doi.org/10.1016/j.carbpol.2011.10.045
  9. Dinitrosyl iron complexes: Formation and antiradical action in heart mitochondria vol.44, pp.3, 2018, https://doi.org/10.1002/biof.1418