DOI QR코드

DOI QR Code

Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe

  • Kim, Ji-Sun (Departments of Food and Nutrition, Chonnam National University) ;
  • Bang, Mi-Ae (Departments of Food and Nutrition, Chonnam National University) ;
  • Lee, Song-Mi (School of Biological Sciences and Technology, Chonnam National University) ;
  • Chae, Ho-Zoon (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Kang-Hwa (Departments of Food and Nutrition, Chonnam National University)
  • Published : 2010.03.31

Abstract

Chaperone;Glutathione peroxidase;Peroxiredoxin;Schizosaccharomyces pombe;Thioredoxin peroxidase;To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43$^{\circ}C$, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.

Keywords

References

  1. Netto, L. E. S., Chae, H. Z., Kang, S. W., Rhee, S. G. and Stadtman ER. (1996) Removal of Hydrogen Peroxide by Thiol-specific Antioxidant Enzyme (TSA) Is Involved with Its Antioxidant Properties. J. Biol. Chem. 271, 15315-15321 https://doi.org/10.1074/jbc.271.26.15315
  2. Flohe, L., Budde, H. and Hofmann, B. (2003) Peroxiredoxins in antioxidant defense and redox regulation. Biofactors. 19, 3-10 https://doi.org/10.1002/biof.5520190102
  3. Immenschuh, S. and Baumgart-Vogt, E. (2005) Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox. Signal. 7, 768-777 https://doi.org/10.1089/ars.2005.7.768
  4. Park, S. G., Cha, M. K., Jeong, W. and Kim, I. H. (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723-5732 https://doi.org/10.1074/jbc.275.8.5723
  5. Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., Lee, J. R., Lee, S. S., Moon, J. C., Yun, J. W., Choi, Y. O., Kim, W. Y., Kang, J. S., Cheong, G. W., Yun, D. J., Rhee, S. G., Cho, M. J. and Lee, S. Y. (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 117, 625-635 https://doi.org/10.1016/j.cell.2004.05.002
  6. Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W. and Kim, K. (2005) Peroxiredoxin, a novel family of peroxidases. Gravit. Space. Biol. Bull. 18, 3-9
  7. Kho, C. W., Lee, P. Y., Bae, K. H., Kang, S., Cho, S., Lee, do. H., Sun, C. H., Yi, G. S., Park, B. C. and Park, S. G. Kho. (2008) Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae. Microbiol. Biotechnol. 18, 270-282
  8. Tanaka, T., Izawa, S. and Inoue, Y. (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280, 42078-42087 https://doi.org/10.1074/jbc.M508622200
  9. Jara, M., Vivancos, A. P., Calvo, I. A., Moldon, A., Sanso, M. and Hidalgo, E. (2007) The Peroxiredoxin Tpx1 Is Essential as a $H_2O_2$ Scavenger during Aerobic Growth in Fission Yeast. Molecular Biology of the Cell 18, 2288-2295 https://doi.org/10.1091/mbc.E06-11-1039
  10. Lee, S. Y., Song, J. Y., Kwon, E. S. and Roe, J. H. (2008) Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. Biochem. Biophys. Res. Commun. 367, 67-71 https://doi.org/10.1016/j.bbrc.2007.12.105
  11. Tanaka, T., Hijioka, H., Fujita, K., Usuki, Y., Taniguchi, M. and Hir asawa, E. (2004) Oxidative Stress-Dependent Inhibition of Yeast Cell Growth by Farnesylamine and Its Possible Relation to Amine Oxidase in the Mitochondrial Fraction. J. Biosci. Bioeng. 98, 470-476 https://doi.org/10.1016/S1389-1723(05)00314-2
  12. Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Louisot, P. and Lunardi, J. (2002) Proteomics analysis of cellular response to oxidative stress; Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396-19401 https://doi.org/10.1074/jbc.M106585200
  13. Yang, K. S., Kang, S. W., Woo, H. A., Hwang, S. C., Chae, H. Z., Kim, K. and Rhee, S. G. (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036 https://doi.org/10.1074/jbc.M206626200
  14. Chuang, M. H., Wu, M. S., Lo, W. L., Lin, J. T., Wong, C.H. and Chiou, S. H. (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. U.S.A. 103, 2552-2557 https://doi.org/10.1073/pnas.0510770103
  15. Jara, M., Vivancos, A. P., Calvo, I. A., Moldon, A., Sanso, M. and Hidalgo, E. (2007) The Peroxiredoxin Tpx1 Is Essential as a H2O2 Scavenger during Aerobic Growth in Fission Yeast. Molecular. Biology. of the Cell 18, 2288-2295 https://doi.org/10.1091/mbc.E06-11-1039
  16. Lee, J., Spector, D., Godon, C., Labarre, J. and Toledano, M. B. (1999) A New Antioxidant with Alkyl Hydroperoxide Defense Properties in Yeast. J. Biol. Chem. 274, 4537-4544 https://doi.org/10.1074/jbc.274.8.4537
  17. Yamashita, H., Avraham, S., Jiang, S., London, R., Van Veldhoven, P. P., Subramani, S., Rogers, R. A. and Avraham, H. (1999) Characterization of human and murine PMP20 peroxisomal proteins that exhibit antioxidant activity in vitro. J. Biol. Chem. 274, 29897-29904 https://doi.org/10.1074/jbc.274.42.29897
  18. Kang, G. Y., Park, E. H., Kim, K. and Lim, C. J. (2009) Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67 https://doi.org/10.1007/s12275-008-0077-3
  19. Kim, K., Kim, I. H., Lee, K. Y., Rhee, S. G. and Stadtman, E. R. (1988) The isolation and purification of a specific 'protector' protein which inhibits enzyme inactivation by a thiol/Fe(III)/$O_2$ mixed-function oxidation system. J. Biol. Chem. 263, 4704-4711
  20. Lee, S., Kim, J. S., Yun, C. H., Chae, H. Z. and Kim, K. (2009). Aspartyl aminopeptidase of Schizosaccharomyce pombe has a molecular chaperone function. BMB Reports. 42, 812-816 https://doi.org/10.5483/BMBRep.2009.42.12.812

Cited by

  1. Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.082
  2. Identification and functional analysis of peroxiredoxin isoforms inEuglena gracilis vol.78, pp.4, 2014, https://doi.org/10.1080/09168451.2014.890037
  3. Dissection of a Redox Relay: H2O2-Dependent Activation of the Transcription Factor Pap1 through the Peroxidatic Tpx1-Thioredoxin Cycle vol.5, pp.5, 2013, https://doi.org/10.1016/j.celrep.2013.11.027
  4. Peroxisomal quality control mechanisms vol.22, 2014, https://doi.org/10.1016/j.mib.2014.09.009
  5. Screening Molecular Chaperones Similar to Small Heat Shock Proteins inSchizosaccharomyces pombe vol.43, pp.3, 2015, https://doi.org/10.5941/MYCO.2015.43.3.272
  6. Cellular redox homeostasis, reactive oxygen species and replicative ageing inSaccharomyces cerevisiae vol.14, pp.1, 2014, https://doi.org/10.1111/1567-1364.12114
  7. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction vol.53, pp.16, 2014, https://doi.org/10.1021/bi401700f
  8. Redox Regulation of an AP-1-Like Transcription Factor, YapA, in the Fungal Symbiont Epichloë festucae vol.12, pp.10, 2013, https://doi.org/10.1128/EC.00129-13