DOI QR코드

DOI QR Code

Evaluating Nutritional Quality of Single Stage- and Two Stage-fermented Soybean Meal

  • Chen, C.C. (Department of Animal Science, National Chung-Hsing University) ;
  • Shih, Y.C. (Department of Biotechnology, Asia University) ;
  • Chiou, P.W.S. (Department of Nursing, Chung Jen College of Nursing Health Science and Management) ;
  • Yu, B. (Department of Animal Science, National Chung-Hsing University)
  • 투고 : 2009.06.21
  • 심사 : 2009.08.15
  • 발행 : 2010.05.01

초록

This study investigated the nutritional quality of soybean meal (SBM) fermented by Aspergillus ($FSBM_A$) and/or followed by Lactobacillus fermentation ($FSBM_{A+L}$). Both fermented products significantly improved protein utilization of SBM with higher trichloroacetic acid (TCA) soluble true protein content, in vitro protein digestibility and available lysine content, especially in $FSBM_{A+L}$. Moreover, $FSBM_{A+L}$ produced a huge amount of lactic acid resulting in lower pH as compared to the unfermented SBM or soybean protein concentrate (SPC) (p<0.05). $FSBM_A$ and $FSBM_{A+L}$ raised 4.14% and 9.04% of essential amino acids and 5.38% and 9.37% of non-essential amino acids content, respectively. The ${\alpha}$-galactoside linkage oligosaccharides such as raffinose and stachyose content in $FSBM_A$ and $FSBM_{A+L}$ decreased significantly. The results of soluble protein fractions and distribution showed that the ratio of small protein fractions (<16 kDa) were 42.6% and 63.5% for $FSBM_A$ and $FSBM_{A+L}$, respectively, as compared to 7.2% for SBM, where the ratio of large size fractions (>55 kDa, mainly ${\beta}$-conglycinin) decreased to 9.4%, 5.4% and increased to 38.8%, respectively. There were no significant differences in ileal protein digestibility regardless of treatment groups. SPC inclusion in the diet showed a better protein digestibility than the SBM diet. In summary, soybean meal fermented by Aspergillus, especially through the consequent Lactobacillus fermentation, could increase the nutritional value as compared with unfermented SBM and is compatible with SPC.

키워드

참고문헌

  1. Araba, M. and N. M. Dale. 1990. Evaluation of protein solubility as an indicator of overprocessing of soybean meal. Poult. Sci. 69:76-83 https://doi.org/10.3382/ps.0690076
  2. Association of Official Analytical Chemists. 1980. Official methods of analysis. 13th ed. Association of Official Analytical Chemists, Washington, DC
  3. Babinszky, L., J. M. Van Der Meer, H. Boer and L. A. D. Hartog. 1990. An in-vitro method for prediction of the digestible crude protein content in pig feed. J. Sci. Food Agric. 50:173-178 https://doi.org/10.1002/jsfa.2740500205
  4. Badley, R. A., D. Atkinson, H. Hauser, D. Oldani, J. P. Green and J. M. Stubb. 1975. The structure, physical and chemical properties of the soy bean protein glycinin. Biochim. Biophys. Acta. 412: 214-228 https://doi.org/10.1016/0005-2795(75)90036-7
  5. Barampama, Z. and R. E. Simard. 1995. Effect of soaking, cooking and fermentation on composition, in vitro starch digestibility and nutritive value of common beans. Plant Foods Hum. Nutr. 48:349-365 https://doi.org/10.1007/BF01088494
  6. Blackburn, S. 1978. Amino acid determination: Methods and techniques. 2nd ed., Marcel Dekker, Inc. NY
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Delente, J. and K. Ladenburg. 1972. Quantitative determination of the oligosaccharides in defatted soybean meal by gas-liquid chromatography. J. Food Sci. 37:372-374 https://doi.org/10.1111/j.1365-2621.1972.tb02640.x
  9. Faurobert, M. 1997. Application of two-dimensional gel electrophoresis to prunus armeniaca leaf and bark tissues. Electrophoresis 17:170-173
  10. Feng, J., X. Liu, Z. R. Xu, Y. P. Lu and Y. Y. Liu. 2007. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 134:259-303
  11. Frias, J., Y. S. Sono, C. Martinez-Villaluenga, E. G. De Mejia and C. Vidal-Valverde. 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56:99-105 https://doi.org/10.1021/jf072177j
  12. Friedman, M. and D. L. Brandon. 2001. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 49:1069-1086 https://doi.org/10.1021/jf0009246
  13. Hall, R. J., N. Trinder and D. I. Givens. 1973. Observation on the use of 2,4,6-Trinitrobenzenesulphonic acid for the determination of available lysine in animal protein concentrates. Analyst 98:673-686 https://doi.org/10.1039/an9739800673
  14. Hancock, J. D., E. R. Peo, Jr, A. J. Lewis and R. A. Moxley. 1990. Effects of ethanol extraction and heat treatment of soybean flakes on function and morphology of pig intestine. J. Anim. Sci. 68:3244-3251
  15. Hong, K. J., C. H. Lee and S. W. Kim. 2004. Aspergillus oryzae gb-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7:430-435 https://doi.org/10.1089/jmf.2004.7.430
  16. Low, A. G. 1980. Nutrient absorption in pigs. J. Sci. Food Agric. 31:1087-1130 https://doi.org/10.1002/jsfa.2740311102
  17. Marsili, R. T., H. Ostapenko, R. E. Simmons and D. E. Green. 1983. High performance liquid chromatographic determination of organic acid. J. Food Prot. 46:52-57
  18. Mbithi-Mwikya, S., W. Ooghe, J. Van Camp, D. Ngundi and A. Huyghebaert. 2000. Amino acid profiles after sprouting, autoclaving and lactic acid fermentation of finger millet and kidney beans. J. Agric. Food Chem. 48:3081-3085 https://doi.org/10.1021/jf0002140
  19. Mikkelsen, L. L. and B. B. Jensen. 2004. Effect of fructooligosaccharides and transgalacto-oligosaccharides on microbial populations and microbial activity in the gastrointestinal tract of piglets post-weaning. Anim. Feed Sci. Technol. 117:107-119 https://doi.org/10.1016/j.anifeedsci.2004.07.015
  20. National Research Council. 1998. Nutrient requirements of swine. 10th Ed. National Academy Press, Washington, DC
  21. Nout, M. J. and J. L. Kiers. 2005. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 98:789-805 https://doi.org/10.1111/j.1365-2672.2004.02471.x
  22. Parsons, C. M., K. Hashimoto, K. J. Wedekind and D. H. Baker. 1991. Soybean protein solubility in potassium hydroxide: An in vitro test of in vivo protein quality. J. Anim. Sci. 69:2918-2924
  23. Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factora influenceing the structure and function of the small intestine in the weaning pig: a review. Livest. Prod. Sci. 51:215-236 https://doi.org/10.1016/S0301-6226(97)00057-2
  24. Samanya, M. and K. E. Yamauchi. 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. Part A 133:95-104 https://doi.org/10.1016/S1095-6433(02)00121-6
  25. Sarin, V. K., S. B. Kent, J. P. Tam and R. B. Merrifield. 1981. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 117:147-157 https://doi.org/10.1016/0003-2697(81)90704-1
  26. SAS. 1999. Statistical analysis system users’ guide: Statistics. Ver. 8.0. SAS Institude Inc., Cary, NC
  27. Sch$\ddot{a}$gger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1:16-22 https://doi.org/10.1038/nprot.2006.4
  28. Schwingel, W. R. and D. B. Bates. 1996. Use of sodium dodecyl sulfate polyacrylamide gel electrophoresis to measure degradation of soluble soybean proteins by Prevotella ruminicola GA33 or mixed urinal microbes in vitro. J. Anim. Sci. 74:475-482
  29. Williams, C. H., D. J. David and O. Iismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385 https://doi.org/10.1017/S002185960001546X
  30. Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. I. Park, J. Y. Choi and B. J. Chae. 2007. Comparative efficacy of different soy protein sourced on growth performance, nutrient digestibility and intestinal morphology in weaned pigs. Asian-Aust. J. Anim. Sci. 20:775-783
  31. Zamora, R. G. and T. L. Veum. 1988. Nutritive value of whole soybeans fermented with Aspergillus oryzae or rhizopus oligosporus as evaluated by neonatal pigs. J. Nutr. 118:438-444

피인용 문헌

  1. Solid-State Fermentation vol.90, pp.6, 2013, https://doi.org/10.1094/CCHEM-01-13-0007-R
  2. vol.47, pp.3, 2016, https://doi.org/10.1111/are.12543
  3. Bacillus subtilis Fermentation for Enhancement of Feed Nutritive Value of Soybean Meal vol.57, pp.2, 2014, https://doi.org/10.3839/jabc.2014.030
  4. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal vol.65, pp.Pt 1, 2015, https://doi.org/10.1099/ijs.0.070938-0
  5. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0153230
  6. Optimization of the Fermentation Conditions to Reduce Anti-Nutritive Factors in Soybean Meal vol.41, pp.5, 2016, https://doi.org/10.1111/jfpp.13114
  7. Effect of protein solubility of soybean meal on growth, digestibility and nutrient utilization in Penaeus vannamei vol.25, pp.5, 2017, https://doi.org/10.1007/s10499-017-0147-9
  8. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value vol.8, pp.1, 2017, https://doi.org/10.1186/s40104-017-0184-2
  9. Characteristics of Soybean Meals by Solid State Fermentation Using Bacillus subtilis GA15 vol.781-784, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.781-784.1760
  10. Isolation of bacteria from fermented food and grass carp intestine and their efficiencies in improving nutrient value of soybean meal in solid state fermentation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0245-1
  11. In-vitro starch and protein digestibility and proximate composition of soybean flour fermented with lactic acid bacteria (LAB) consortia vol.52, pp.5, 2010, https://doi.org/10.1016/j.anres.2018.10.001
  12. The Effect of Hydrothermally Processed Soybean- and Rapeseed-Based Diets on Performance, Meat and Carcass Quality Characteristics in Growing-Finishing Pigs vol.19, pp.4, 2010, https://doi.org/10.2478/aoas-2019-0045
  13. Improved utilization of soybean meal through fermentation with commensal Shewanella sp. MR-7 in turbot (Scophthalmus maximus L.) vol.18, pp.None, 2019, https://doi.org/10.1186/s12934-019-1265-z
  14. Two‐step biological approach for treatment of rapeseed meal vol.85, pp.2, 2020, https://doi.org/10.1111/1750-3841.15011
  15. Growth performance, haematological responses, intestinal microbiology and carcass traits of broiler chickens fed finisher diets containing two-stage fermented banana peel meal vol.52, pp.3, 2010, https://doi.org/10.1007/s11250-019-02147-y
  16. An evaluation of replacing fish meal with fermented soybean meal in the diets of largemouth bass (Micropterus salmoides): Growth, nutrition utilization and intestinal histology vol.51, pp.10, 2020, https://doi.org/10.1111/are.14774
  17. Dietary fermented soybean meal replacement alleviates diarrhea in weaned piglets challenged with enterotoxigenic Escherichia coli K88 by modulating inflammatory cytokine levels and cecal microbiota vol.16, pp.None, 2010, https://doi.org/10.1186/s12917-020-02466-5
  18. Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances vol.19, pp.1, 2010, https://doi.org/10.1080/1828051x.2020.1790045
  19. Effect of Cooking on Protein Digestion and Antioxidant Activity of Different Legume Pastes vol.10, pp.1, 2010, https://doi.org/10.3390/foods10010047
  20. Single Cell Protein: A Potential Substitute in Human and Animal Nutrition vol.13, pp.16, 2021, https://doi.org/10.3390/su13169284
  21. Effect of low-fishmeal diets on some digestive physiological responses of juvenile and growing olive flounder (Paralichthys olivaceus) fed at an industrial-scale fish farm vol.21, pp.None, 2010, https://doi.org/10.1016/j.aqrep.2021.100904
  22. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms vol.7, pp.4, 2010, https://doi.org/10.1016/j.aninu.2021.06.002
  23. In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-93451-x
  24. Effects of feeding solid-state fermented wheat bran on growth performance and nutrient digestibility in broiler chickens vol.101, pp.1, 2010, https://doi.org/10.1016/j.psj.2021.101402