DOI QR코드

DOI QR Code

Transcript profiling of expressed sequence tags from intramuscular fat, longissimus dorsi muscle and liver in Korean cattle (Hanwoo)

  • Lim, Da-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Seung-Hwan (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Yong-Min (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Yoon, Du-Hak (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Shin, Youn-Hee (Insilicogen, Inc.) ;
  • Kim, Kyu-Won (Laboratory of Bioinformatics and Population Genetics, Department of Agricultural Biotechnology, Seoul National University) ;
  • Park, Hye-Sun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Hee-Bal (Laboratory of Bioinformatics and Population Genetics, Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2010.02.28

Abstract

A large data set of Hanwoo (Korean cattle) ESTs was analyzed to obtain differential gene expression results for the following three libraries: intramuscular fat, longissimus dorsi muscle and liver. To better understand the gene expression profiles, we identified differentially expressed genes (DEGs) via digital gene expression analysis. Hierarchical clustering of genes was performed according to their relative abundance within the six separate groups (Hanwoo fat versus non-Hanwoo fat, Hanwoo muscle versus non-Hanwoo muscle and Hanwoo liver versus non-Hanwoo liver), producing detailed patterns of gene expression. We determined the quantitative traits associated with the highly expressed genes. We also provide the first list of putative regulatory elements associated with differential tissue expression in Hanwoo cattle. In addition, we conducted evolutionary analysis that suggests a subset of genes accelerated in the bovine lineage are strongly correlated with their expression in Hanwoo muscle.

Keywords

References

  1. Claverie, J. M. (1999) Computational methods for the identification of differential and coordinated gene expression. Hum. Mol. Genet. 8,1821-1832 https://doi.org/10.1093/hmg/8.10.1821
  2. Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95, 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
  3. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273-3297 https://doi.org/10.1091/mbc.9.12.3273
  4. Anderson, L. and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533-537 https://doi.org/10.1002/elps.1150180333
  5. Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima, Y. and Matsubara, K. (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat. Genet. 2,173-179 https://doi.org/10.1038/ng1192-173
  6. Lee, Y., Lee, J., Lee, J., Kim, J., Park, H. and Yeo, J. (2008) Identification of Candidate SNP (Single Nucleotide Polymorphism) for Growth and Carcass Traits Related to QTL on Chromosome 6 in Hanwoo (Korean Cattle) Asian-Aust. J. Anim. Sci. 21,1703-1709 https://doi.org/10.5713/ajas.2008.80223
  7. Lee, J., Kwon, J. and Kim, J. (2008) Multifactor dimensionality reduction (MDR) analysis to detect single nucleotide polymorphisms associated with a carcass trait in a hanwoo population. Asian-Aust. J. Anim. Sci. 21, 784-788 https://doi.org/10.5713/ajas.2008.70645
  8. Zadissa, A., McEwan, J. C. and Brown, C. M. (2007) Inference of transcriptional regulation using gene expression data from the bovine and human genomes. BMC Genomics 8, 265 https://doi.org/10.1186/1471-2164-8-265
  9. Lim, D., Byun, M., Cho, Y., Yoon, D., Lee, S. and Shin, Y. and Im, S. (2009) Functional analysis of expressed sequence tags from Hanwoo (Korean cattle) cDNA libraries. J. Anim. Sci. Tech. 51, 1-8 https://doi.org/10.5187/JAST.2009.51.1.001
  10. Bouton, P., Carrol, F., Harris, P. and Shorthose, W. (1973) Influence of pH and fiber contraction state upon factors affecting the tenderness of bovine muscle. J. Food Sci. 38, 404-407 https://doi.org/10.1111/j.1365-2621.1973.tb01440.x
  11. Klont, R. E. and Lambooy, E. (1995) Effects of preslaughter muscle exercise on muscle metabolism and meat quality studied in anesthetized pigs of different halothane genotypes. J. Anim. Sci. 73,108-117 https://doi.org/10.2527/1995.731108x
  12. Lee, S., Panjono, Kang, S., Kim, T. and Park, Y. (2008) The effects of dietary sulfur and vitamin e supplementation on the quality of beef from the longissimus muscle of hanwoo bulls. Asian-Aust. J. Anim. Sci. 21,1059-1066 https://doi.org/10.5713/ajas.2008.70372
  13. Jiang, S. T. (1998) Contribution of muscle proteinases to meat tenderization. Proc. Natl. Sci. Counc. Repub. China B 22, 97-107
  14. Calkins, C., Dutson, T., Smith, G., Carpenter, Z. and Davis, G. (1981) Relationship of fiber type composition to marbling and tenderness of bovine muscle. J. Food Sci. 46, 708-710 https://doi.org/10.1111/j.1365-2621.1981.tb15331.x
  15. Beal, W. E., Notter, D. R. and Akers, R. M. (1990) Techniques for estimation of milk yield in beef cows and relationships of milk yield to calf weight gain and postpartum reproduction. J. Anim. Sci. 68, 937-943 https://doi.org/10.2527/1990.684937x
  16. Casas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M. and Koohmaraie, M. (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78, 560-569 https://doi.org/10.2527/2000.783560x
  17. Wheeler, T. L., Cundiff, L. V. and Koch, R. M. (1994) Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J. Anim. Sci. 72, 3145-3151
  18. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Richardson, R. I. and Sheard, P. R. (1999) Manipulating meat quality and composition. Proc. Nutr. Soc. 58, 363-370 https://doi.org/10.1017/S0029665199000488
  19. Wood, J. D. (1990) Consequences for meat quality of reducing carcass fatness. Reducing Fat in Meat Animals 344-397
  20. Yu, X., Lin, J., Zack, D. J. and Qian, J. (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic. Acids. Res. 34, 4925-4936 https://doi.org/10.1093/nar/gkl595
  21. Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A. E., Kel-Margoulis, O. V., Kloos, D. U., Land, S., Lewicki- Potapov, B., Michael, H., Munch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S. and Wingender, E. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic. Acids. Res. 31, 374-378 https://doi.org/10.1093/nar/gkg108
  22. Brahmachary, M., Schonbach, C., Yang, L., Huang, E., Tan, S. L., Chowdhary, R., Krishnan, S. P., Lin, C. Y., Hume, D. A., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y. and Bajic, V. B. (2006) Computational promoter analy sis of mouse, rat and human antimicrobial peptide-coding genes. BMC Bioinformatics 7 (Suppl 5), S8 https://doi.org/10.1186/1471-2105-7-S5-S8
  23. Omori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., Watanabe, S., Tanigami, A. and Sugano, S. (2001) CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic. Acids. Res. 29, 2154-2162 https://doi.org/10.1093/nar/29.10.2154
  24. Dorus, S., Vallender, E. J., Evans, P. D., Anderson, J. R., Gilbert, S. L., Mahowald, M., Wyckoff, G. J., Malcom, C. M. and Lahn, B. T. (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027-1040 https://doi.org/10.1016/j.cell.2004.11.040
  25. Fei, Z., Tang, X., Alba, R. M., White, J. A., Ronning, C. M., Martin, G. B., Tanksley, S. D. and Giovannoni, J. J. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40, 47-59 https://doi.org/10.1111/j.1365-313X.2004.02188.x
  26. Megy, K., Audic, S. and Claverie, J. M. (2002) Heart-specific genes revealed by expressed sequence tag (EST) sampling. Genome Biol. 3, RESEARCH0074 https://doi.org/10.1186/gb-2002-3-12-research0074
  27. Hwang, D. M., Dempsey, A. A., Lee, C. Y. and Liew, C. C. (2000) Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66, 1-14 https://doi.org/10.1006/geno.2000.6171
  28. Bortoluzzi, S., d'Alessi, F. and Danieli, G. A. (2000) A computational reconstruction of the adult human heart transcriptional profile. J. Mol. Cell Cardiol. 32, 1931-1938 https://doi.org/10.1006/jmcc.2000.1227
  29. Schmitt, A. O., Specht, T., Beckmann, G., Dahl, E., Pilarsky, C. P., Hinzmann, B. and Rosenthal, A. (1999) Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucleic. Acids. Res. 27, 4251-4260 https://doi.org/10.1093/nar/27.21.4251
  30. Draghici, S., Khatri, P., Martins, R. P., Ostermeier, G. C. and Krawetz, S. A. (2003) Global functional profiling of gene expression. Genomics 81, 98-104 https://doi.org/10.1016/S0888-7543(02)00021-6
  31. Kent, W. J. (2002) BLAT--the BLAST-like alignment tool. Genome Res 12, 656-664 https://doi.org/10.1101/gr.229202.ArticlepublishedonlinebeforeMarch2002
  32. Siegel, S. (1988) Nonparametric methods for the behavioral sciences, 2nd ed., pp. 127-136, McGraw-Hill, New York, NY, USA
  33. Kel, A. E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O. V. and Wingender, E. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic. Acids. Res. 31, 3576-3579 https://doi.org/10.1093/nar/gkg585
  34. Eisenberg, E. and Levanon, E. Y. (2003) Human housekeeping genes are compact. Trends Genet. 19, 362-365 https://doi.org/10.1016/S0168-9525(03)00140-9
  35. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 https://doi.org/10.1093/bioinformatics/btm404
  36. Suyama, M., Torrents, D. and Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic. Acids. Res. 34, W609 https://doi.org/10.1093/nar/gkl315
  37. Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591 https://doi.org/10.1093/molbev/msm088

Cited by

  1. Transcriptional regulatory network analysis of the over-expressed genes in adipose tissue vol.36, pp.1, 2014, https://doi.org/10.1007/s13258-013-0145-x
  2. Generation and analysis of expressed sequence tags from the bone marrow of Chinese Sika deer vol.39, pp.3, 2012, https://doi.org/10.1007/s11033-011-1060-3
  3. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views vol.14, pp.3, 2015, https://doi.org/10.1111/1541-4337.12131
  4. Underlying functional genomics of fat deposition in adipose tissue vol.521, pp.1, 2013, https://doi.org/10.1016/j.gene.2013.03.045
  5. Genetic variants and signatures of selective sweep of Hanwoo population (Korean native cattle) vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.211