DOI QR코드

DOI QR Code

Protection of burn-induced skin injuries by the flavonoid kaempferol

  • Park, Byoung-Kwon (Department of Microbiology, College of Medicine, Hallym University) ;
  • Lee, Soo-Hyoung (Department of Microbiology, College of Medicine, Hallym University) ;
  • Seo, Jae-Nam (Department of Pathology, College of Medicine, Hallym University) ;
  • Rhee, Jae-Won (Center for Medical Science Research, Hallym University) ;
  • Park, Jae-Bong (Department of Biochemistry, College of Medicine, Hallym University) ;
  • Kim, Yong-Sun (Department of Microbiology, College of Medicine, Hallym University) ;
  • Choi, Ihn-Geun (Department of Neuropsychiatry, Hallym University) ;
  • Kim, Young-Eun (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Published : 2010.01.31

Abstract

Thermal burn injury induces inflammatory cell infiltrates in the dermis and thickening of the epidermis. Following a burn injury, various mediators, including reactive oxygen species (ROS), are produced in macrophages and neutrophils, exposing all tissues to oxidative injury. The anti-oxidant activities of flavonoids have been widely exploited to scavenge ROS. In this study, we observed that several flavonoids-kaempferol, quercetin, fisetin, and chrysin-inhibit LPS-induced IL-8 promoter activation in RAW 264.7 cells. In contrast with quercetin and fisetin, pretreatment of kaempferol and chrysin did not decrease cell viability. Inflammatory cell infiltrates in the dermis and thickening of the epidermis induced by burn injuries in mice was relieved by kaempferol treatment. However, the injury was worsened by fisetin, quercetin, and chrysin. Expression of TNF-a induced by burn injuries was decreased by kaempferol. These findings suggest the potential use of kaempferol as a therapeutic in thermal burn-induced skin injuries.

Keywords

References

  1. Teodorczyk-Injeyan, J. A., Sparkes, B. G., Mills, G. B., Peters, W. J. and Falk, R. E. (1986) Impairment of T cell activation in burn patients: a possible mechanism of thermal injury induced immunosuppression. Clin. Exp. Immunol. 65, 570-581
  2. Pruitt, B. A. Jr. (1990) Infection and the burn patient. Br. J. Surg. 77, 1081-1082 https://doi.org/10.1002/bjs.1800771002
  3. O'Sullivan, S. T. and O'Connor, T. P. (1997) Immunosuppression following thermal injury: the pathogenesis of immunodysfunction. Br. J. Plast. Surg. 50, 615-623 https://doi.org/10.1016/S0007-1226(97)90507-5
  4. Schwacha, M. G. (2003) Macrophages and post-burn immune dysfunction. Burns 29, 1-14 https://doi.org/10.1016/S0305-4179(02)00187-0
  5. Gibran, N. S., Ferguson, M., Heimbach, D. M. and Isik, F.F. (1997) Monocyte chemoattractant protein-1 mRNA expression in the human burn wound. J. Surg. Res. 70, 1-6 https://doi.org/10.1006/jsre.1997.5017
  6. Faunce, D. E., Llanas, J. N. Patel, P. J., Gregory, M. S.,Duffner, L. A. and Kovacs, E. J. (1999) Neutrophil chemokine production in the skin following scald injury. Burns 25, 403-410 https://doi.org/10.1016/S0305-4179(99)00014-5
  7. Dipietro, L. A., Reintjes, M. G., Low, Q. E., Levi, B. and Gamelli, R. L. (2001) Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein-1. Wound Repair Regen. 9, 28-33 https://doi.org/10.1046/j.1524-475x.2001.00028.x
  8. Armstrong, D. A., Major, J. A., Chudyk, A. and Hamilton, T. A. (2004) Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J. Leukoc. Biol. 75, 641-648 https://doi.org/10.1189/jlb.0803370
  9. Moss, N. M., Gough, D. B., Jordan, A. L., Grbic, J. T.,Wood, J. J., Rodrick, M. L. and Mannick, J. A. (1988) Temporal correlation of impaired immune response after thermal injury with susceptibility to infection in a murine model. Surgery 104, 882-887
  10. Sayeed, M. M. (1996) Alterations in cell signaling and related effector functions in T lymphocytes in burn/trauma/septic injuries. Shock 5, 157-166 https://doi.org/10.1097/00024382-199603000-00001
  11. O'Sullivan, S. T., Lederer, J. A., Horgan, A. F., Chin, D.H., Mannick, J. A. and Rodrick, M. L. (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg. 222, 482-492 https://doi.org/10.1097/00000658-199522240-00006
  12. Shallo, H., Plackett, T. P., Heinrich, S. A. and Kovacs, E. J.(2003) Monocyte chemoattractant protein-1 (MCP-1) and macrophage infiltration into the skin after burn injury in aged mice. Burns 29, 641-647 https://doi.org/10.1016/S0305-4179(03)00070-6
  13. O'Riordain, M. G., Collins, K. H., Pilz, M., Saporoschetz,I. B., Mannick, J. A. and Rodrick, M. L. (1992) Modulation of macrophage hyperactivity improves survival in a burn-sepsis model. Arch. Surg. 127, 152-158 https://doi.org/10.1001/archsurg.1992.01420020034005
  14. Drost, A. C., Burleson, D. G., Cioffi, W. G. Jr., Mason, A.D. Jr. and Pruitt, B. A. Jr. (1993) Plasma cytokines after thermal injury and their relationship to infection. Ann. Surg. 218, 74-78 https://doi.org/10.1097/00000658-199307000-00012
  15. Meakins, J. L. (1990) Etiology of multiple organ failure. J. Trauma 30, S165-168 https://doi.org/10.1097/00005373-199012001-00033
  16. Rawlingson, A. (2003) Nitric oxide, inflammation and acute burn injury. Burns 29, 631-640 https://doi.org/10.1016/S0305-4179(03)00079-2
  17. Luo, G., Peng, D., Zheng, J., Chen, X., Wu, J., Elster, E. and Tadaki, D. (2005) The role of NO in macrophage dysfunction at early stage after burn injury. Burns 31, 138-144 https://doi.org/10.1016/j.burns.2004.09.009
  18. Parihar, A., Parihar, M. S., Milner, S. and Bhat, S. (2008)Oxidative stress and anti-oxidative mobilization in burn injury. Burns 34, 6-17 https://doi.org/10.1016/j.burns.2007.04.009
  19. Toklu, H. Z., Tunali-Akbay, T., Erkanli, G., Yuksel, M.,Ercan, F. and Sener, G. (2007) Silymarin, the antioxidant component of Silybum marianum, protects against burninduced oxidative skin injury. Burns 33, 908-916 https://doi.org/10.1016/j.burns.2006.10.407
  20. Beukelman, C. J., van den Berg, A. J., Hoekstra, M. J., Uhl, R., Reimer, K. and Mueller, S. (2008) Anti-inflammatory properties of a liposomal hydrogel with povidone-iodine (Repithel) for wound healing in vitro. Burns 34, 845-855 https://doi.org/10.1016/j.burns.2007.11.014
  21. Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W.,Cao, J., Papadopoulou, N., Cetrulo, C. L. and Theoharides, T. C. (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 145, 934-944 https://doi.org/10.1038/sj.bjp.0706246
  22. Comalada, M., Ballester, I., Bail\acute{o}n, E., Sierra, S., Xaus, J.,G\acute{a}lvez, J., de Medina, F. S. and Zarzuelo, A. (2006) Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids:analysis of the structure-activity relationship. Biochem. Pharmacol. 72, 1010-1021 https://doi.org/10.1016/j.bcp.2006.07.016
  23. Pang, J. L., Ricupero, D. A., Huang, S., Fatma, N., Singh, D.P., Romero, J. R. and Chattopadhyay, N. (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol. 71, 818-826 https://doi.org/10.1016/j.bcp.2005.12.023
  24. Hu, M. (2007) Commentary: bioavailability of flavonoids and polyphenols: call to arms. Mol. Pharm. 4, 803-806 https://doi.org/10.1021/mp7001363
  25. Lee, S., Kim, Y. J., Kwon, S., Lee, Y., Choi, S. Y., Park, J. and Kwon, H. J. (2009) Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Rep. 42, 265-270 https://doi.org/10.5483/BMBRep.2009.42.5.265
  26. Park, J. S., Rho, H. S., Kim, D. H. and Chang, I. S. (2006)Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem. 54, 2951-2956 https://doi.org/10.1021/jf052900a
  27. Samhan-Arias, A. K., Martín-Romero, F. J. and Gutiérrez-Merino, C. (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic. Biol. Med. 37, 48-61 https://doi.org/10.1016/j.freeradbiomed.2004.04.002
  28. Park, H. H., Lee, S., Son, H. Y , Park, S. B., Kim, M. S.,Choi, E. J., Singh, T. S., Ha, J. H., Lee, M. G., Kim, J. E.,Hyun, M. C., Kwon, T. K., Kim, Y. H. and Kim, S. H. (2008)Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 31, 1303-1311 https://doi.org/10.1007/s12272-001-2110-5
  29. Kim, Y. J., Kim, D., Lee, Y., Choi, S. Y., Park, J., Lee, S. Y.,Park, J. W. and Kwon, H. J. (2009) Effects of nanoparticulate saponin-platinum conjugates on 2,4-dinitrofluorobenzeneinduced macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells. BMB rep. 42, 304-309 https://doi.org/10.5483/BMBRep.2009.42.5.304
  30. Walker, H.L. and Mason, A.D. Jr. (1968) A standard animal burn. J. Trauma 8, 1049-1051 https://doi.org/10.1097/00005373-196811000-00006

Cited by

  1. Magnetic retrieval of chitosan: Extraction of bioactive constituents from green tea beverage samples vol.137, pp.4, 2012, https://doi.org/10.1039/C1AN15873B
  2. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells vol.19, pp.1, 2012, https://doi.org/10.1186/1423-0127-19-31
  3. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia vol.262, pp.2, 2012, https://doi.org/10.1016/j.taap.2012.04.034
  4. A new material based on collagen and taxifolin: Preparation and properties vol.60, pp.3, 2015, https://doi.org/10.1134/S0006350915030173
  5. Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-κB activation in lipopolysaccharide-induced BV2 microglial cells vol.137, pp.3, 2011, https://doi.org/10.1016/j.jep.2011.08.008
  6. Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells vol.216, pp.10, 2011, https://doi.org/10.1016/j.imbio.2011.05.002
  7. Beer and beer compounds: physiological effects on skin health vol.28, pp.2, 2014, https://doi.org/10.1111/jdv.12204