DOI QR코드

DOI QR Code

High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR

  • Yue, Tao (State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University) ;
  • Yin, Jingdong (State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University) ;
  • Li, Fengna (State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University) ;
  • Li, Defa (State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University) ;
  • Du, Min (Department of Animal Science, University of Wyoming)
  • 발행 : 2010.02.28

초록

The present study investigated whether the mammalian target of rapamycin (mTOR) signal pathway is involved in the regulation of high glucose-induced intramuscular adipogenesis in porcine muscle satellite cells. High glucose (25 mM) dramatically increased intracellular lipid accumulation in cells during the 10-day adipogenic differentiation period. The expressions of CCAAT/enhancer binding protein-$\alpha$ (C/EBP-$\alpha$) and fatty acid synthase (FAS) protein were gradually enhanced during the 10-day duration while mTOR phosphorylation and sterol-regulatory- element-binding protein (SREBP)-1c protein were induced on day 4. Moreover, inhibition of mTOR activity by rapamycin resulted in a reduction of SREBP-1c protein expression and adipogenesis in cells. Collectively, our findings suggest that the adipogenic differentiation of porcine muscle satellite cells and a succeeding extensive adipogenesis, which is triggered by high glucose, is initiated by the mTOR signal pathway through the activation of SREBP-1c protein. This process is previously uncharacterized and suggests a cellular mechanism may be involved in ectopic lipid deposition in skeletal muscle during type 2 diabetes.

키워드

참고문헌

  1. Asakuran, A., Kumaki, M. and Rudnicki, M. A. (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic and adipogenic differentiation. Differentiation 68, 245-253 https://doi.org/10.1046/j.1432-0436.2001.680412.x
  2. De Coppi, P., Milan, G., Scarda, A., Boldrin, L., Centobene, Piccoli, M., Pozzobon, M., Pilon, C., Pagano, C., Gamba, P. and Vettor, R. (2006) Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia 49, 1962-1973 https://doi.org/10.1007/s00125-006-0304-6
  3. Singh, N. K., Chae, H. S., Hwang, I. H., Yoo, Y. M., Ahn, C. N., Lee, S. H., Lee, H. J., Park, H. J. and Chung, H. Y. (2007) Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85, 1126-1135 https://doi.org/10.2527/jas.2006-524
  4. Greco, A. V., Mingrone, G., Giancaterini, A., Manco, M., Morroni, M., Cinti, S., Granzotto, M., Vettor, R., Camastra, S. and Ferrannini, E. (2002) Insulin resistance in morbid obesity: Reversal with intramyocellular fat depletion. Diabetes. 51, 144-151 https://doi.org/10.2337/diabetes.51.2007.S144
  5. Barr, R. G., Nathan, D. M., Meigs, J. B. and Singer, D. E. (2002) Tests of glycemia for the diagnosis of type 2 diabetes mellitus. Ann. Intern. Med. 137, 263-272 https://doi.org/10.7326/0003-4819-137-4-200208200-00011
  6. Guillet-Deniau, I., Pichard, A., Kone, A., Esnous, C., Nieruchalski, M., Girard, J. and Prip-Buus, C. (2004) Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element binding-protein-1cdependent pathway. J. Cell Sci. 117, 1937-1944 https://doi.org/10.1242/jcs.01069
  7. Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R., Abatangelo, G., Pozzan, T., Pinton, P. and Rizzuto, R. (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc. Natl. Acad. Sci. 105, 1226- 1231 https://doi.org/10.1073/pnas.0711402105
  8. Becard, D., Hainault, I., Azzout-Marniche, D., Bertry-Coussot, L., Ferre, P. and Foufelle, F. (2001) Adenovirus-mediated over expression of sterol regulatory element binding protein- 1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes. 50, 2425-2430 https://doi.org/10.2337/diabetes.50.11.2425
  9. Foretz, M., Guichard, C., Ferre, P. and Foufelle, F. (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis related genes. Proc. Natl. Acad. Sci. 96, 12737-12742 https://doi.org/10.1073/pnas.96.22.12737
  10. Gosmain, Y., Lefai, E., Ryser, S., Roques, M. and Vidal, H. (2004) Sterol regulatory element-binding protein-1 mediates the effect of insulin on hexokinase II gene expression in human muscle cells. Diabetes. 53, 321-329 https://doi.org/10.2337/diabetes.53.2.321
  11. Guillet-Deniau, I., Mieulet, V., Le Lay, S., Achouri, Y., Carre, D., Girard, J., Foufelle, F. and Ferre, P. (2002) Sterol regulatory element binding protein-1c expression and action in rat muscles: Insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes. 51, 1722-1728 https://doi.org/10.2337/diabetes.51.6.1722
  12. Foufelle, F. and Ferre, P. (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 366, 377-391 https://doi.org/10.1042/BJ20020430
  13. Porstmann, T., Santos, C. R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, J. R., Chung, Y. L. and Schulze, A. (2008) SREBP Activity Is regulated by mTORC1 and contributes to akt-dependent cell growth. Cell Metabol. 8, 224-236 https://doi.org/10.1016/j.cmet.2008.07.007
  14. Tang, W., Yuan, J., Chen, X., Gu, X., Luo, K., Li, J., Wan, B., Wang, Y. and Yu, L. (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. Journal of Biochemistry and Molecular Biology. 39, 626-635 https://doi.org/10.5483/BMBRep.2006.39.5.626
  15. Brunn, G. J., Hudson, C. C., Sekulić, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C. and Abraham R. T. (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99-101 https://doi.org/10.1126/science.277.5322.99
  16. Lin, T. A. and Lawrence, J. C. (1996) Control of the translational regulators PHAS-I and PHAS-II by insulin and cAMP in 3T3-L1 adipocytes. J. Biol. Chem. 271, 30199-30204 https://doi.org/10.1074/jbc.271.47.30199
  17. Wilschut, K. J., Jaksani, S., Van Den Dolder, J., Haagsman, H. P. and Roelen, B. A. J. (2008) Isolation and characterization of porcine adult muscle-derived progenitor cells. J. Cell. Biol. 105, 1228-1239
  18. Wang, H., Maechler, P., Antinozzi, P. A., Herrero, L., Hagenfeldt-Johansson, K. A., Bjorklund, A. and Wollheim, C. B. (2003) The transcription factor SREBP-1c is instrumental in the development of $\beta$-cell dysfunction. J. Biol. Chem. 278, 16622-16629 https://doi.org/10.1074/jbc.M212488200
  19. Wu, Z., Xie, Y., Buchner, N. L. and Farmer, S. L. (1996) Induction of peroxisome proliferator activated receptor $\gamma$ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBP$\beta$, C/EBPδ, and glucocorticoids. Mol. Cell. Biol. 16, 4128-4136
  20. Freytag, S. O., Paielli, D. L. and Gilbert, J. D. (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse broblastic cells. Genes Dev. 8, 1654-1663 https://doi.org/10.1101/gad.8.14.1654
  21. Hu, E., Tontonoz, P. and Spiegelman, B. M. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. 92, 9856-9860 https://doi.org/10.1073/pnas.92.21.9856
  22. Yoo, E. J., Chung, J. J., Choe, S. S., Kim, K. H. and Kim, J. B. (2006) Down-regulation of histone deacetylases stimulates adipocyte differentiation. J. Biol. Chem. 281, 6608-6615 https://doi.org/10.1074/jbc.M508982200
  23. Kim, J. B. and Spiegelman, B. M. (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10, 1096-1107 https://doi.org/10.1101/gad.10.9.1096
  24. Kim, J. B., Sarraf, P., Wright, M., Yao, K. M., Mueller, E., Solanes, G., Lowell, B. B. and Spiegelman, B. M. (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101, 1-9 https://doi.org/10.1172/JCI1411
  25. Andreolas, C., da Silva Xavier, G., Diraison, F., Zhao, C., Varadi, A., Lopez-Casillas, F., Ferre, P., Foufelle, F. and Rutter, G. A. (2002) Stimulation of acetyl-CoA carboxylase gene expression by glucose requires insulin release and sterol regulatory element binding protein 1c in pancreatic MIN6 beta-cells. Diabetes. 51, 2536-2545 https://doi.org/10.2337/diabetes.51.8.2536
  26. Balan, O. V., Vorotelyak, E. A., Smirnova, T. D. and Ozernyuk, N. D. (2008) Specific features of satellite cells and myoblasts at different stages of rat postnatal development. Biol. Bull. 35, 126-131 https://doi.org/10.1134/S1062359008020052
  27. Qu, Z., Balkir, L., van Deutekom, J. C., Robbins, P. D., Pruchnic, R. and Huard, J. (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 142, 1257-1267 https://doi.org/10.1083/jcb.142.5.1257
  28. Zhou, X., Li, D. F., Yin, J. D., Ni, J. J., Dong, B., Zhang, J. X. and Du, M. (2007) CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle. J. Lipid. Res. 48, 1701-1709 https://doi.org/10.1194/jlr.M600525-JLR200

피인용 문헌

  1. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice vol.6, pp.1, 2015, https://doi.org/10.1186/s13287-015-0063-8
  2. AnIn VitroModel to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia vol.37, pp.3, 2013, https://doi.org/10.4093/dmj.2013.37.3.176
  3. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo vol.6, pp.8, 2012, https://doi.org/10.1002/term.462
  4. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0160751
  5. mTOR and the differentiation of mesenchymal stem cells vol.43, pp.7, 2011, https://doi.org/10.1093/abbs/gmr041
  6. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells vol.40, pp.4, 2012, https://doi.org/10.3892/ijo.2011.1310
  7. Sodium nitroprusside (SNP) sensitizes human gastric cancer cells to TRAIL-induced apoptosis vol.17, pp.2, 2013, https://doi.org/10.1016/j.intimp.2013.06.021
  8. Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs vol.106, pp.03, 2011, https://doi.org/10.1017/S0007114511000213
  9. MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures vol.158, pp.2, 2011, https://doi.org/10.1016/j.cbpb.2010.10.003
  10. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway vol.71, pp.04, 2012, https://doi.org/10.1017/S0029665112000754
  11. Bortezomib inhibits gastric carcinoma HGC-27 cells through the phospho-Jun N-terminal kinase (p-JNK) pathway in vitro vol.559, pp.2, 2015, https://doi.org/10.1016/j.gene.2015.01.035
  12. RhoA/ROCK inhibition improves the beneficial effects of glucocorticoid treatment in dystrophic muscle: implications for stem cell depletion vol.26, pp.15, 2017, https://doi.org/10.1093/hmg/ddx117
  13. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications vol.3, pp.4, 2014, https://doi.org/10.4161/adip.32215
  14. J7, a methyl jasmonate derivative, enhances TRAIL-mediated apoptosis through up-regulation of reactive oxygen species generation in human hepatoma HepG2 cells vol.26, pp.1, 2012, https://doi.org/10.1016/j.tiv.2011.10.016
  15. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players vol.72, pp.11, 2015, https://doi.org/10.1007/s00018-015-1857-7
  16. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19040928
  17. Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22565-6
  18. The effect of dietary amylose/amylopectin ratio on serum and hepatic lipid content and its molecular mechanisms in growing-finishing pigs pp.09312439, 2018, https://doi.org/10.1111/jpn.12884
  19. mTOR and ROS regulation by anethole on adipogenic differentiation in human mesenchymal stem cells vol.19, pp.1, 2018, https://doi.org/10.1186/s12860-018-0163-2