DOI QR코드

DOI QR Code

On-off controllable RNA hybrid expression vector for yeast three-hybrid system

  • 발행 : 2010.02.28

초록

The yeast three-hybrid system (Y3H), a powerful method for identifying RNA-binding proteins, still suffers from many false positives, due mostly to RNA-independent interactions. In this study, we attempted to efficiently identify false positives by introducing a tetracycline operator (tetO) motif into the RPR1 promoter of an RNA hybrid expression vector. We successfully developed a tight tetracycline-regulatable RPR1 promoter variant containing a single tetO motif between the transcription start site and the A-box sequence of the RPR1 promoter. Expression from this tetracycline-regulatable RPR1 promoter in the presence of tetracycline-response transcription activator (tTA) was positively controlled by doxycycline (Dox), a derivative of tetracycline. This on-off control runs opposite to the general knowledge that Dox negatively regulates tTA. This positively controlled RPR1 promoter system can therefore efficiently eliminate RNA-independent false positives commonly observed in the Y3H system by directly monitoring RNA hybrid expression.

키워드

참고문헌

  1. SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S., Wickens, M., Bernstein, D. S., Buter, N. and Stumpf, C. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 8496-8501 https://doi.org/10.1073/pnas.93.16.8496
  2. Bernstein, D. S., Buter, N., Stumpf, C., Wickens, M., SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P. and Fields, S. (2002) Analyzing mRNA-protein complexes using a yeast three-hybrid system. Methods 26, 123-141 https://doi.org/10.1016/S1046-2023(02)00015-4
  3. Czauderna, F., Santel, A., Hinz, M., Fechtner, M., Durieux, B., Fisch, G., Leenders, F., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic. Acids. Res. 31, e127 https://doi.org/10.1093/nar/gng127
  4. Lin, X., Yang, J., Chen, J., Gunasekera, A., Fesik, S. W. and Shen, Y. (2004) Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett. 577, 376-380 https://doi.org/10.1016/j.febslet.2004.10.033
  5. Matsukura, S., Jones, P. A. and Takai, D. (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic. Acids. Res. 31, e77 https://doi.org/10.1093/nar/gng077
  6. van de Wetering, M., Oving, I., Muncan, V., Pon Fong, M. T., Brantjes, H., van Leenen, D., Holstege, F. C., Brummelkamp, T. R., Agami, R. and Clevers, H. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609-615 https://doi.org/10.1038/sj.embor.embor865
  7. Belli, G., Gari, E., Aldea, M. and Herrero, E. (1998) Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127-1138 https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1127::AID-YEA300>3.0.CO;2-#
  8. Dingermann, T., Frank-Stoll, U., Werner, H., Wissmann, A., Hillen, W., Jacquet, M. and Marschalek, R. (1992) RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system. EMBO J. 11, 1487-1492
  9. Gari, E., Piedrafita, L., Aldea, M. and Herrero, E. (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837-848 https://doi.org/10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T
  10. Wishart, J. A., Hayes, A., Wardleworth, L., Zhang, N. and Oliver, S. G. (2005) Doxycycline, the drug used to control the tet-regulatable promoter system, has no effect on global gene expression in Saccharomyces cerevisiae. Yeast 22, 565-569 https://doi.org/10.1002/yea.1225
  11. Lee, J. Y., Evans, C. F. and Engelke, D. R. (1991) Expression of RNase P RNA in Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. Proc. Natl. Acad. Sci. U.S.A. 88, 6986-6990 https://doi.org/10.1073/pnas.88.16.6986
  12. Moriyoshi, K. (2009) pBT, a novel vector for tetracycline-regulated yeast three-hybrid assay. Nucleic. Acids. Res. 37, e11 https://doi.org/10.1093/nar/gkp300
  13. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89, 5547-5551 https://doi.org/10.1073/pnas.89.12.5547
  14. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68 https://doi.org/10.1016/0378-1119(89)90359-4
  15. Gietz, R. D. and Schiestl, R. H. (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 1-4 https://doi.org/10.1038/nprot.2007.17
  16. Alessandra, S., Alessandro, T., Flavio, S. and Alejandro, H. (2008) Artificial antisense RNAs silence lacZ in E. coli by decreasing target mRNA concentration. BMB Rep. 41, 568-574 https://doi.org/10.5483/BMBRep.2008.41.8.568

피인용 문헌

  1. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design vol.17, pp.1, 2016, https://doi.org/10.1186/s13059-016-0900-9
  2. Tunable and Multifunctional Eukaryotic Transcription Factors Based on CRISPR/Cas vol.2, pp.10, 2013, https://doi.org/10.1021/sb400081r
  3. Distinct patterns of Cas9 mismatch tolerancein vitroandin vivo vol.44, pp.11, 2016, https://doi.org/10.1093/nar/gkw417
  4. Tools used to study how protein complexes are assembled in signaling cascades vol.2, pp.5, 2011, https://doi.org/10.4161/bbug.2.5.17844
  5. Fifteen years of the yeast three-hybrid system: RNA–protein interactions under investigation vol.58, pp.4, 2012, https://doi.org/10.1016/j.ymeth.2012.07.016
  6. Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System vol.76, pp.2, 2012, https://doi.org/10.1128/MMBR.05021-11