DOI QR코드

DOI QR Code

Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets

  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University) ;
  • Hahn, Hoh-Gyu (Division of Life Sciences, Korea Institute of Science and Technology) ;
  • Choi, Soo-Young (Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
  • Published : 2010.04.30

Abstract

GDH has been known to be related with hyperinsulinism-hyperammonemia syndrome. We have screened new drugs with a view to developing effective drugs modulating GDH activity. In the present work, we investigated the effects of a new drug, KHG26377 on glutamate formation and GDH activity in cultured rat islets. When KHG26377 was added to the culture medium for 24 h prior to kinetic analysis, the $V_{max}$ of GDH was decreased by 59% whereas $K_m$ is not significantly changed. The concentration of glutamate decreased by 50% and perfusion of islets with KHG26377 reduced insulin release by up to 55%. Our results show that KHG26377 regulates insulin release by inhibiting GDH activity in primary cultured islets and support the previous studies for the connection between GDH activity and insulin release. Further studies are required to determine in vivo effects and pharmacokinetics of the drug.

Keywords

References

  1. Fisher, H. F. (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol. 113, 16-27 https://doi.org/10.1016/S0076-6879(85)13006-5
  2. Hudson, R. C. and Daniel, R. M. (1993) L-Glutamate dehydrogenase:distribution, properties and mechanism. Comp. Biochem. Physiol. B. 106, 767-792 https://doi.org/10.1016/0305-0491(93)90031-Y
  3. Nissim, I. (1999) Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am. J. Physiol. 277, F493-497
  4. Bryla, J., Michalik, M., Nelson, J. and Erecinska, M. (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43, 1187-1195 https://doi.org/10.1016/0026-0495(94)90064-7
  5. Yorifuji, T., Muroi, J., Uematsu, A., Hiramatsu, H. and Momoi, T. (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum. Genet. 104, 476- 479 https://doi.org/10.1007/s004390050990
  6. Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R. and Maechler, P. (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266-276 https://doi.org/10.1007/s00125-003-1306-2
  7. Maechler, P. and Wollheim, C. B. (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685-689 https://doi.org/10.1038/45280
  8. H$\phi$y, M.H., Maechler, P., Efanov, A. M., Wollheim, C. B., Berggren, P. O. and Gromada, J. (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett. 531, 199-203 https://doi.org/10.1016/S0014-5793(02)03500-7
  9. Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M, Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Windruch, R., Alt, F. W. and Guarenta, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941-954 https://doi.org/10.1016/j.cell.2006.06.057
  10. Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castrnovo, V., Maechler, P. and Verdin, E. (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592 https://doi.org/10.1074/jbc.M705488200
  11. Stanley, C. A., Lieu, Y. K., Hsu, B. Y., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., Perlman, K., Rich, B. H., Zammarchi, E. and Poncz, M. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 338, 1352-1357 https://doi.org/10.1056/NEJM199805073381904
  12. Stanley, C. A., Fang, J., Kutyna, K., Hsu, B. Y. L., Ming, J. E., Glaser, B. and Poncz, M. (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators. Diabetes. 49, 667-673 https://doi.org/10.2337/diabetes.49.4.667
  13. MacMullen, C., Fang, J., Hsu, B. Y., Kelly, A., de Lonlay-Debeney, P., Saudubray, J. M., Ganguly, A., Smith, T. J. and Stanley, C. A. (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 86, 1782-1787 https://doi.org/10.1210/jc.86.4.1782
  14. Li, C., Allen, A., Kwagh, J., Doliba, N. M., Qin, W., Najafi, H., Collins, H. W., Matschinsky, F. M., Stanley, C. A. and Smith, T. J. (2006) Green tea polyphenols modulated insulin secretion by inhibition glutamate dehydrogenase. J. Biol. Chem. 281, 10214-10221 https://doi.org/10.1074/jbc.M512792200
  15. Yang, S. J., Huh, J. W., Kim, M. J., Lee, W. J., Kim, T. U., Choi, S. Y. and Cho, S.-W. (2003) Regulatory effects of 5'-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie. 85, 581-586 https://doi.org/10.1016/S0300-9084(03)00092-0
  16. Lee, K. H., Lee, W. J., Yang, S. J., Huh, J. W., Choi, J., Hong, H. N., Hwang, O. and Cho, S. W. (2004) Inhibitory effects of Cimicifuga heracleifolia extract on glutamate formation and glutamate dehydrogenase activity in cultured islets. Mol. Cells 30, 509-514
  17. Li, M., Smith C. J., Walker, M. T. and Smith, T. J. (2009) Novel inhibitors complexed with glutamate dehydrogenase. J. Biol. Chem. 284, 22988-23000 https://doi.org/10.1074/jbc.M109.020222
  18. Kawaguchi, A. and Bloch, K. (1976) Inhibition of glutamate dehydrogenase and malate dehydrogenases by palmitoyl coenzyme A. J. Biol. Chem. 251, 1406-1412
  19. Fumagalli, E, Funicello, M., Rauen, T., Gobbi, M. and Mennini, T. (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur. J. Pharmacol. 578, 171-176 https://doi.org/10.1016/j.ejphar.2007.10.023
  20. Kulkarni, S. S., Zou, M. F., Cao, J., Deschamps, J. R., Rodriguez, A. L., Conn, P. J. and Newman, A. H. (2009) Structure-activity relationships comparing N-(6-methylpyridinyl)-substituted aryl amides to 2-methyl-6-(substitutedarylethynyl) pyridines or 2-methyl-4-(substituted-arylethynyl) thiazoles as novel metabotropic glutamate receptor subtype 5 antagonists. J. Med. Chem. 52, 3563-3575 https://doi.org/10.1021/jm900172f
  21. Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. and Kawamoto, H. (2009) Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg. Med. Chem. Lett. 19, 5464-5468 https://doi.org/10.1016/j.bmcl.2009.07.097
  22. Choi, M. M., Kim, E. A., Huh, J. W., Choi, S. Y., Cho, S. W. and Yang, S. J. (2008) Small-interfering-RNA-mediated silencing of human glutamate dehydrogenase induces apoptosis in neuroblastoma cells. Biotechnol. Appl. Biochem. 51, 107-110 https://doi.org/10.1042/BA20070190
  23. Heinrikson, R. L. and Meredith, S. C. (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography:precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136, 65-74 https://doi.org/10.1016/0003-2697(84)90307-5
  24. Herbert, V., Lou, K. S., Gottlieb, C. W. and Bleicher, S. J. (1965) Coated charcoal immunoassay of insulin. J. Clin. Endocrinol. Metab. 25, 1375-1384 https://doi.org/10.1210/jcem-25-10-1375
  25. Lee, E. Y., Yoon, H. Y., Ahn, J. Y., Choi, S. Y. and Cho, S.-W. (2001) Identification of GTP binding site of human glutamate dehydrogenase using cassette mutagenesis and photoaffinity labeling. J. Biol. Chem. 276, 47930-47936 https://doi.org/10.1074/jbc.M108918200
  26. Yoon, H. Y., Cho, E. H., Kwon, H. Y., Choi, S. Y. and Cho, S. W. (2002) Importance of glutamate-279 for the coenzyme binding of human glutamate dehydrogenase. J. Biol. Chem. 277, 41448-41454 https://doi.org/10.1074/jbc.M208208200

Cited by

  1. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis vol.59, pp.4, 2011, https://doi.org/10.1016/j.neuint.2011.03.024
  2. 2-Amino-1,3-thiazoles Suppressed Lipopolysaccharide-Induced IL-β and TNF-α vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.271
  3. Roles of cysteine residues in the inhibition of human glutamate dehydrogenase by palmitoyl-CoA vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.156
  4. Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3 vol.45, pp.8, 2012, https://doi.org/10.5483/BMBRep.2012.45.8.040