DOI QR코드

DOI QR Code

A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus

  • Barandoc, Karen P. (Department of Bioresource Sciences, Andong National University) ;
  • Park, Jay-Young (Department of Biology and Bioengineering, Worcester Polytechnic Institute) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • Published : 2010.04.30

Abstract

Polydnavirus genome is segmented and dispersed on host wasp chromosome. After replication, the segments form double- stranded circular DNAs and embedded in viral coat proteins. These viral particles are delivered into a parasitized host along with parasitoid eggs. A serine-rich protein (SRP) is predicted in a polydnavirus, Cotesia plutellae bracovirus (CpBV), genome in its segment no. 33 (CpBV-S33), creating CpBV-SRP1. This study explored its expression and physiological function in the diamondback moth, Plutella xylostella, larvae parasitized by C. plutellae. CpBV-SRP1 encodes 122 amino acids with 26 serines and several predicted phosphorylation sites. It is persistently expressed in all tested tissues of parasitized P. xylostella including hemocyte, fat body, and gut. Its physiological function was analyzed by injecting CpBV-S33 and inducing its expression in nonparasitized P. xylostella by a technique called SERI (segment expression and RNA interference). The expression of CpBV-SRP1 significantly impaired the spreading behavior and total cell count of hemocytes of treated larvae. Subsequent RNA interference of CpBV-SRP1 rescued the immunosuppressive response. This study reports the persistent expression of CpBV-SRP1 in a parasitized host and its parasitic role in suppressing the host immune response by altering hemocyte behavior and survival.

Keywords

References

  1. Webb, B. A. (2000) Polydnavirus biology, genome structure and evolution; in The Insect Viruses, Miller, L. K. and Ball, L. A. (eds.), pp. 105-137, Plenum Press, New York, USA
  2. Fleming, J. G. W. and Summers, M. D. (1991) Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host. Proc. Natl. Acad. Sci. U.S.A. 88, 9770-9774 https://doi.org/10.1073/pnas.88.21.9770
  3. Krell, P. J., Summers, M. D. and Vinson, S. B. (1982) Virus with a multipartite superhelical DNA genome from the ichneumonid parasitoid Campoletis sonorensis. J. Virol. 43, 859-870
  4. Webb, B. A. and Strand, M. R. (2005) The biology and genomics of polydnavirus; in Comprehensive Molecular Insect Science, Gilbert, L. I., Iatrou, K. and Gill, S. S. (eds.), pp. 323-360, Elsevier, New York, USA
  5. Beckage, N. E. (2008) Parasitoid polydnaviruses and insect immunity; in Insect Immunology, Beckage, N. E. (ed.), pp. 243-270, Academic Press, New York, USA
  6. Bae, S. and Kim, Y. (2004) Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. A. 138, 39-44 https://doi.org/10.1016/j.cbpb.2004.02.018
  7. Kim, Y., Choi, J. Y. and Je, Y. H. (2007) Cotesia plutellae bracovirus genome and its function in altering host physiology. J. Asia Pac. Entomol. 10, 181-191 https://doi.org/10.1016/S1226-8615(08)60351-9
  8. Ibrahim, A. M. A. and Kim, Y. (2007) Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95, 25-32 https://doi.org/10.1007/s00114-007-0290-7
  9. Ibrahim, A. M. A., Choi, J. Y., Je, Y. H. and Kim, Y. (2007) Protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus: sequence analysis, expression profile and a possible biological role in host immunosuppression. Dev. Comp. Immunol. 31, 978-990 https://doi.org/10.1016/j.dci.2006.11.005
  10. Bae, S. and Kim, Y. (2009) IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 102, 79-87 https://doi.org/10.1016/j.jip.2009.06.007
  11. Kwon, B. and Kim, Y. (2008) Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32, 932-942 https://doi.org/10.1016/j.dci.2008.01.005
  12. Gad, W. and Kim, Y. (2008) A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocytespreading behavior of the diamondback moth Plutella xylostella. J. Gen. Virol. 89, 931-938 https://doi.org/10.1099/vir.0.83585-0
  13. Ibrahim, A. M. A., Choi, J. Y., Je, Y. H. and Kim, Y. (2005) Structure and expression profile of two putative Cotesia plutellae bracovirus genes (CpBV-H4 and CpBV-E94$\alpha$) in parasitized Plutella xylostella. J. Asia Pac. Entomol. 8, 359-366 https://doi.org/10.1016/S1226-8615(08)60258-7
  14. Nalini, M. and Kim, Y. (2007) A putative protein inhibitory factor encoded in Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53, 1283-1292 https://doi.org/10.1016/j.jinsphys.2007.07.004
  15. Kim, H. H., Barandoc, K. and Kim, Y. (2008) A putative actin destabilizer, CpBV-RTX, encoded in the Cotesia plutellae bracovirus and its expression in the parasitized Plutella xylostella. J. Asia Pac. Entomol. 11, 103-106 https://doi.org/10.1016/j.aspen.2008.04.009
  16. Barandoc, K. and Kim, Y. (2009) A technique of segment expression and RNA interference (SERI) reveals a specific physiological function of a cysteine-rich protein gene encoded in Cotesia plutellae bracovirus. J. Microbiol. Biotechnol. 19, 610-615 https://doi.org/10.4014/jmb.0808.495
  17. Kroemer, J. A. and Webb, B. A. (2004) Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49, 431-456 https://doi.org/10.1146/annurev.ento.49.072103.120132
  18. Basio, N. A. and Kim, Y. (2006) Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31, 341-347 https://doi.org/10.1111/j.1365-3032.2006.00524.x
  19. Ibrahim, A. M. A. and Kim, Y. (2006) Parasitization by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth Plutella xylostella. J. Insect Physiol. 52, 943-950 https://doi.org/10.1016/j.jinsphys.2006.06.001
  20. Shi, M., Chen, Y. F., Huang, F., Zhou, X. P., Chen, X. X.and Shi, M. (2008) Characterization of a novel Cotesia vestalis polydnavirus (CvBV) gene containing a ser-rich motif expressed in Plutella xylostella larvae. BMB Rep. 41, 587-592 https://doi.org/10.5483/BMBRep.2008.41.8.587
  21. Ratcliffe, N. A., Rowley, A. F., Fitzgerald, S. W. and Rhodes, C. P. (1985) Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol. 97, 183-350 https://doi.org/10.1016/S0074-7696(08)62351-7
  22. Arnold, J. W. and Hinks, C. F. (1976) Haemopoiesis in Lepidoptera. I. The multiplication of circulating haemocytes. Can. J. Zool. 54, 1003-1012 https://doi.org/10.1139/z76-112
  23. Gardiner, E. M. M. and Strand, M. R. (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 43, 147-164 https://doi.org/10.1002/(SICI)1520-6327(200004)43:4<147::AID-ARCH1>3.0.CO;2-J
  24. Stettler, P., Trenczek, T., Wyler, T., Pfister-Wilhelm, R. and Lanzrein, B. (1998) Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J. Insect Physiol. 44, 817-831 https://doi.org/10.1016/S0022-1910(98)00014-6
  25. Teramoto, T. and Tanaka, T. (2004) Mechanism of reduction of in the number of the circulating hemocytes in the Pseudaletia separata host parasitized by Cotesia kariyai. J. Insect Physiol. 50, 1103-1111 https://doi.org/10.1016/j.jinsphys.2004.08.005
  26. Choi, J. Y., Roh, J. Y., Kang, J. W., Shim, H. J., Woo, S. D., Jin, B. R., Li, M. S. and Je, Y. H. (2005) Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Comm. 332, 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
  27. SAS Institute, Inc. (1989) SAS/STAT User’s Guide, release 6.03 (ed.) SAS Institute, Cary, NC

Cited by

  1. Baculoviral p94 homologs encoded inCotesia plutellaebracovirus suppress both immunity and development of the diamondback moth,Plutellae xylostella vol.23, pp.2, 2016, https://doi.org/10.1111/1744-7917.12237
  2. A copy of cystatin from the diamondback moth Plutella xylostella is encoded in the polydnavirus Cotesia plutellae bracovirus vol.16, pp.4, 2013, https://doi.org/10.1016/j.aspen.2013.06.006