DOI QR코드

DOI QR Code

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong (DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE FOR BASIC SCIENCES KYUNG HEE UNIVERSITY) ;
  • Kim, Nam-Kyun (DIVISION OF GENERAL EDUCATION HANBAT NATIONAL UNIVERSITY) ;
  • Kwak, Tai-Keun (DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY)
  • Published : 2010.03.31

Abstract

Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.

Keywords

References

  1. S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511–2528. https://doi.org/10.1081/AGB-120003481
  2. M. Ba¸ser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297. https://doi.org/10.4134/BKMS.2008.45.2.285
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102–129, World Sci. Publ., River Edge, NJ, 1993.
  4. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639–660. https://doi.org/10.1081/AGB-100001530
  5. G. F. Birkenmeier, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25–42. https://doi.org/10.1016/S0022-4049(00)00055-4
  6. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417– 423. https://doi.org/10.1215/S0012-7094-67-03446-1
  7. E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349–356.
  8. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224. https://doi.org/10.1007/s10474-005-0191-1
  9. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. https://doi.org/10.1016/S0022-4049(99)00020-1
  10. C. Y. Hong, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103–122. https://doi.org/10.1081/AGB-120016752
  11. C. Y. Hong, N. K. Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), 2030–2039. https://doi.org/10.1080/00927870802304663
  12. C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867–4878. https://doi.org/10.1080/00927870008827127
  13. C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399–412. https://doi.org/10.1142/S1005386705000374
  14. A. A. M. Kamal, Some remarks on Ore extension rings, Comm. Algebra 22 (1994), no. 10, 3637–3667. https://doi.org/10.1080/00927879408825048
  15. I. Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  16. N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon. 50 (1999), no. 3, 415–420.
  17. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
  18. T. Y. Lam, A. Leroy, and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459–2506. https://doi.org/10.1080/00927879708826000
  19. T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299. https://doi.org/10.1081/AGB-120037221
  20. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113–2123. https://doi.org/10.1081/AGB-100002173
  21. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724. https://doi.org/10.1080/00927878108822678
  22. K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783–794. https://doi.org/10.1080/00927877708822194

Cited by

  1. QUASI-ARMENDARIZ PROPERTY FOR SKEW POLYNOMIAL RINGS vol.26, pp.4, 2011, https://doi.org/10.4134/CKMS.2011.26.4.557
  2. Special properties of the ring Sn(R) 2017, https://doi.org/10.1142/S0219498817502127