DOI QR코드

DOI QR Code

Biostability and Drug Delivery Efficiency of γ-Fe2O3 Nano-particles by Cytotoxicity Evaluation

세포독성 평가를 통한 γ-Fe2O3 나노입자의 생체안정성 및 약물전달효율

  • Lee, Kwon-Jai (Department of Physics, Soongsil University) ;
  • An, Jeung-Hee (Department of Chemical & Biomolecular Engineering, Sogang University) ;
  • Shin, Jae-Soo (Department of Advanced Materials Engineering, Daejeon University) ;
  • Kim, Dong-Hee (Department of Pathology Lab, Collage of Oriental Medicine, Daejeon University) ;
  • Yoo, Hwa-Seung (East-West Cancer Center, College of Oriental Medicine, Daejeon University) ;
  • Cho, Chong-Kwan (East-West Cancer Center, College of Oriental Medicine, Daejeon University)
  • 이권재 (숭실대학교 물리학과) ;
  • 안정희 (서강대학교 화공생명공학과) ;
  • 신재수 (대전대학교 신소재공학과) ;
  • 김동희 (대전대학교 한의학과) ;
  • 유화승 (대전대학교 한의학과 동서암센타) ;
  • 조종관 (대전대학교 한의학과 동서암센타)
  • Published : 2010.03.27

Abstract

This study examined the biostability and drug delivery efficiency of g-$Fe_2O_3$ magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and $771\;cm^1$. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.

Keywords

References

  1. K. Furumura, H. Sugi, Y. Murakami and H. Asai, US patent, 4598914 (1986).
  2. V. Angeles, C. Magdalena, G. R. Alejandro, C. Macarena, V. V. Sabino, J. S. Carlos, P. M. María and M. Rodolfo, Nanotechnology, 20, 115103 (2009) https://doi.org/10.1088/0957-4484/20/11/115103
  3. J. -K. Han, H. -C. Kim, W. -S. Hong and S. -C. Choi, Kor. J. Mater. Res., 18(7), 389 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.389
  4. P. C. Morais, V. K. Garg, A. C. Oliveira, L. B. Silveira, J. G. Santos, M. M. A. Rodrigues and A. C. Tedesco, Hyperfine Interact., 190, 87 (2009). https://doi.org/10.1007/s10751-009-9968-x
  5. M. Varshney and Y. Li, Biosensors Bioelectron., 22, 2408 (2007).
  6. J. M. Perez, L. Josephson, T. O. Loughlin, D. H. Lgemann and R. Weissleder, Nat. Biotechnol., 20, 816 (2002). https://doi.org/10.1038/nbt720
  7. H. K. Kim and R. Y. Lee, Kor. J. Mater. Res., 19(4), 192 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.4.192
  8. P. S. Doyle, J. Bibette, A. Bancaud and J. Viovy, Science, 295, 2237 (2002). https://doi.org/10.1126/science.1068420
  9. D. Cao, P. He and N. Hu, Analyst, 128, 1268 (2003). https://doi.org/10.1039/b308242c
  10. S. Kuckelhaus, S. C. Reis, M. F. Carneiro, A. C. Tedesco, D. M. Oliveira, E. C. D. Lima, P. C. Morais, R. B. Azevedo and Z. G. M. Lacava, J. Magn. Magn. Mater., 2402, 272 (2004).
  11. P. P. Macaroff, D. M. Oliveira, K. F. Ribeiro, Z. M. Lacava, E. C. D. Lima, P. C. Morais and A. C. Tedesco, J. Magn. Magn. Mater., 293, 293 (2005). https://doi.org/10.1016/j.jmmm.2005.02.022
  12. S. I. Park, J. Kim and C. O. Kim, J. Magn. Magn. Mater., 2340, 272 (2004).
  13. M. Johannsen, B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow, N. Waldofner, R. Scholz, M. Koch, M. Lein, K. Jung, and S. A. Loening, The prostate, 283, 1 (2005).
  14. H. S. Yoo, C. K. Cho and M. S. Hong, Integrative Cancer Therapies, 7, 182 (2008). https://doi.org/10.1177/1534735408322844
  15. K. J. Lee, J. H. An, J. S. Shin, D. H. Kim, C. Kim, H. Ozaki and J. G. Koh, Nanotechnology, 18, 465201 (2007). https://doi.org/10.1088/0957-4484/18/46/465201
  16. G. V. M. Jacintho, P. Corio and J. C. Rubim, J. Electroanal. Chem., 603, 27 (2007). https://doi.org/10.1016/j.jelechem.2007.02.019
  17. P. C. Morais, S. W. da Silva, M. Aparecida, M. A. G. Soler and N. Buske, J. Phys. Chem. A, 104, 2894 (2000). https://doi.org/10.1021/jp9937306