DOI QR코드

DOI QR Code

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Sung, Chang-Hoon (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Lee, Chan-Gyu (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
  • Published : 2010.03.27

Abstract

The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.

Keywords

References

  1. G. C. Xiong, Q. Li, H. L. Ju, R. L. Greene and T. Venkatesan, Appl. Phys. Lett., 66, 1689 (1995). https://doi.org/10.1063/1.113894
  2. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  3. X. W. Li, A. Gupta, G. Xiao and G. Q. Gong, Appl. Phys. Lett., 71, 1124 (1997). https://doi.org/10.1063/1.119747
  4. H. Y. Hwang, S.W. Cheong, N. P. Ong and B. Batlogg, Phys. Rev. Lett., 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041
  5. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri and C. N. R. Rao, Appl. Phys. Lett., 68, 2291 (1996). https://doi.org/10.1063/1.116167
  6. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  7. M. J. Casanove, C. Roucau, P. Baules, J. Majimel, J. C. Ousset, D. Magnoux and J. F. Bobo, Appl. Surf. Sci., 188, 19 (2002). https://doi.org/10.1016/S0169-4332(01)00709-7
  8. G. B. Jeon, B. H. Koo and C. G. Lee, Kor. J. Mater. Res., 16, 44 (2006). https://doi.org/10.3740/MRSK.2006.16.1.044
  9. L. Balcells, A. E. Carrillo, B. Martínez and J. Fontcuberta, Appl. Phys. Lett., 74, 4014 (1999). https://doi.org/10.1063/1.123245
  10. D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Field and P. R. Duncombe, Appl. Phys. Lett., 75, 995 (1999). https://doi.org/10.1063/1.124577
  11. S. Gupta, R. Ranjit, C. Mitra, P. Raychaudhuri and R. Pinto, Appl. Phys. Lett., 78, 362 (2001). https://doi.org/10.1063/1.1342044
  12. C. H. Yan, Z. G. Xu, T. Zhu, Z. M. Wang, F. X. Cheng, Y. H. Huang and C. S. Liao, J. Appl. Phys., 87, 5588 (2000). https://doi.org/10.1063/1.372459
  13. Y. H. Huang, X. Chen, Z. M. Wang, C. S. Liao, C. H. Yan, H. W. Zhao and B. G. Shen, J. Appl. Phys., 91, 7733 (2002). https://doi.org/10.1063/1.1448302
  14. Y. H. Huang, S. Wang, F. Luo, S. Jiang and C. H. Yan, Chem. Phys. Lett., 362, 114 (2002). https://doi.org/10.1016/S0009-2614(02)01032-1
  15. X. Bo, G. Li, X. Q. Qiu, Y. F. Xue and L. Li, J. Solid State Chem., 3, 1038 (2007).
  16. J. A. Toledo-Antonio, N. Nava, M. Martinez and X. Bokhimi, Appl. Catal., A234, 137 (2002).
  17. G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, J. Appl. Phys., 87, 8005 (2000). https://doi.org/10.1063/1.373487
  18. Z. H. Zhou, J. M. Xue, H. S. O. Chan and J. Wang, J. Appl. Phys., 90, 4169 (2001). https://doi.org/10.1063/1.1404423
  19. J. F. Hochepied, P. Bonville and M. P. Pileni, J. Phys. Chem., B104, 905 (2000).
  20. J. F. Hochepied and M. P. Pileni, J. Appl. Phys., 87, 2472 (2000). https://doi.org/10.1063/1.372205
  21. C. H. Yan, Y. H. Huang, X. Chen, C. S. Liao, Z. M. Wang, J. Phys.: Condens. Matter., 14, 9607 (2002). https://doi.org/10.1088/0953-8984/14/41/316
  22. Q. Huang, J. Li, X. J. Huang, X. S. Gao and C. K. Ong, J. Appl. Phys., 90, 2924 (2001). https://doi.org/10.1063/1.1392962
  23. A. Gaur, G. D. Varma, J. Alloy. Comp., 453, 423 (2008). https://doi.org/10.1016/j.jallcom.2006.11.132
  24. M. Rubinstein, J. Appl. Phys., 87, 5019 (2000). https://doi.org/10.1063/1.373234
  25. Z. M. Tian, S. L. Yuan, Y. Q. Wang, L. Liu, S. Y. Yin, P. Li, K. L. Liu, J. H. He and J. Q. Li, Mater. Sci. Eng. B, 150, 50 (2008). https://doi.org/10.1016/j.mseb.2008.01.002

Cited by

  1. Structural and Magneto-transport Properties of (La0.75Ca0.15Sr0.1MnO3)0.8(YBa2Cu3O7−δ )0.2 Composite vol.28, pp.8, 2015, https://doi.org/10.1007/s10948-015-2974-0
  2. Determinant Factors of Service Orientation for Human Resources of Long Term Care Facility vol.9, pp.10, 2018, https://doi.org/10.13106/ijidb.2018.vol9.no10.39.