DOI QR코드

DOI QR Code

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi (Department of Advanced Materials Engineering, College of Samcheok, Kangwon National University) ;
  • Kwon, Yong-Jung (Department of Chemical Engineering, College of Chuncheon, Kangwon National University)
  • Published : 2010.03.27

Abstract

It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

Keywords

References

  1. K. J. Konsztowicz and D. Fontaine, J. Am. Ceram. Soc., 731, 2809 (1990).
  2. E. S. Leal and R. J. Lopes, Meas. Sci. & Technol., 6, 188 (1995). https://doi.org/10.1088/0957-0233/6/2/010
  3. A. D. Kersey, in Proceedings of First World Conference on Structural Control (Los Angeles, CA, 1994), ed. H. Takagi, (Cmcbooks, Tokyo, 1994) p.167.
  4. S. F. Masri, M. J. Devries and R. O. Clus, J. Eng. Mech., 120, 1696 (1994). https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1696)
  5. C. I. Merzbacher, A. D. Kersey and E. J. Friebele, Smart Mater. Struct., 5, 196 (1996). https://doi.org/10.1088/0964-1726/5/2/008
  6. K. Ikeue, Encyclopedia of Composite Materials, p.51, ed. H. Miyairi, Asakurasyoden, Tokyo (1991) (in Japanese).
  7. K. Schulte and Ch. Baron, Compos. Sci. Technol., 36, 63 (1989). https://doi.org/10.1016/0266-3538(89)90016-X
  8. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita and Y. Ohtsuka, J. Am. Ceram. Soc., 76, 875 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb05309.x
  9. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita, Y. Ohtsuka and Y. Arai, Smart Mater. Struct., 1, 324 (1992). https://doi.org/10.1088/0964-1726/1/4/007
  10. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita, Y. Ohtsuka and Y. Arai, J. Ceram. Soc. Jpn., 100(12), 1429 (1992). https://doi.org/10.2109/jcersj.100.1429
  11. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita, Y. Ohtsuka and Y. Arai, Adv. Compos. Mater., 4(4), 297 (1995). https://doi.org/10.1163/156855195X00168
  12. Y. Arai, N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita and Y. Ohtsuka, J. Ceram Soc., Jpn., 102(12), 745 (1994).
  13. S. G. Shin, Met. Mater. Int., 7(6), 519 (2001). https://doi.org/10.1007/BF03179249
  14. Ishida. S, H. Yanagida, H. Matsubara and S. G. Shin, Japan patent; No. 9-207872, No. 11-220259.
  15. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed., Tayler & Francis, London (1992).
  16. S. G. Shin, H. J. Lim and J. H. Lee, Kor. J. Mater. Res., 13(11), 732 (2003). https://doi.org/10.3740/MRSK.2003.13.11.732
  17. S. G. Shin, Y. H. Kim and J. H. Lee, Kor. J. Mater. Res., 12(2), 135 (2002). https://doi.org/10.3740/MRSK.2002.12.2.135