DOI QR코드

DOI QR Code

Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast

스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향

  • Byun, In-Seon (Dept. of Immunology, Medical School, SoonChunHyang University) ;
  • Sarkar, Swapan Kumar (Depat. of Biomedical engineering, Medical School, SoonChunHyang University) ;
  • Seo, Hyung-Seok (Dept. of Exercise Prescription, Konyang University) ;
  • Lee, Byong-Taek (Depat. of Biomedical engineering, Medical School, SoonChunHyang University) ;
  • Song, Ho-Yeon (Dept. of Immunology, Medical School, SoonChunHyang University)
  • 변인선 (순천향대학교 의과대학 면역학교실) ;
  • ;
  • 서형석 (건양대학교 운동처방학과) ;
  • 이병택 (순천향대학교 의과대학 의공학교실) ;
  • 송호연 (순천향대학교 의과대학 면역학교실)
  • Published : 2010.03.27

Abstract

In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.

Keywords

References

  1. A. Schwarz, F. Hoffmann, J. L'age-Stehr, A. M. Teqzess and G. Offermann, Transplantation, 44(1), 21 (1987). https://doi.org/10.1097/00007890-198707000-00006
  2. A. Crange, F. Gray, P. Cesaro, H. Adle-Biassette, C. Duvoux, J. Bell, P. Parchi, P. Gambetti and J. D. Degos, Ann. Neuro., 38(2), 269 (1995). https://doi.org/10.1002/ana.410380223
  3. O. Gauthier, E. Goyenvalle, J. M. Bouler, J. Guicheux, P. Pilet, P. Weiss and G. Daculsi, J. Mater. Sci. Mater. Med., 12(5), 385 (2001). https://doi.org/10.1023/A:1011284517429
  4. H. Yuan, Z. Yang, J. D. Bruijn, K. De Groot and X. Zhang, Biomaterials, 22(19), 2617 (2001). https://doi.org/10.1016/S0142-9612(00)00450-6
  5. K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, 21, 667 (2000). https://doi.org/10.1016/S0142-9612(99)00242-2
  6. A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko, T. Katsuki and T. Tanaka, Biomaterials, 22, 2263 (2001). https://doi.org/10.1016/S0142-9612(00)00415-4
  7. D. A. Puleo and, A. Nanci, Biomaterials, 20, 2311 (1999). https://doi.org/10.1016/S0142-9612(99)00160-X
  8. K. Anselme, Biomaterials, 21(7), 667 (2000). https://doi.org/10.1016/S0142-9612(99)00242-2
  9. E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, Bone, 18(6), 517 (1996). https://doi.org/10.1016/8756-3282(96)00080-4
  10. N. Chattopadhyay, S. J. Quinn, O. Kifor, C. Ye and E. M. Brown, Biochem. Pharmacol., 74(3), 438 (2007). https://doi.org/10.1016/j.bcp.2007.04.020
  11. E. Bonnelye, A. Chabadel, F. Saltel and P. Jurdic, Bone, 42(1), 129 (2008). https://doi.org/10.1016/j.bone.2007.08.043
  12. M. D. Grynpas and P. J. Marie, Bone, 11(5), 313 (1990). https://doi.org/10.1016/8756-3282(90)90086-E
  13. A. Barbara, P. Delannoy, B. G. Denis and P. J. Marie, Metabolism, 53(4), 532 (2004). https://doi.org/10.1016/j.metabol.2003.10.022
  14. T. Morohashi, T. Sano and S. Yamada, Jpn. J. Pharmacol., 64(3), 155 (1994). https://doi.org/10.1254/jjp.64.155
  15. C. V. Steven, E. DeB Marc and C. D. Patrick, Kidney Int., 64, 534 (2003). https://doi.org/10.1046/j.1523-1755.2003.00123.x
  16. P. Ammann, V. Shen, B. Robin, Y. Mauras, J. P. Bonjour and R. Rizzole, J. Bone Miner. Res., 19(12), 2012 (2004). https://doi.org/10.1359/JBMR.040906
  17. S. Tournis and J. Musculoskelet Neuronal Interact, 7(3), 266 (2007).
  18. L. L. Zhu, S. Zaidi, Y. Peng, H. Zhou, B. S. Moonga, A. BlesiusA, I. Dupin-Roger, M. Zaidi and L. Sun, Biochem. Biophys. Res. Commun., 355(2), 307 (2007). https://doi.org/10.1016/j.bbrc.2007.01.120
  19. S. Choudhary, S. Wadhwa, L. G. Raisz, C. Alander and C. C. Pibeam, J. Bone Miner. Res., 18(10), 1813 (2003). https://doi.org/10.1359/jbmr.2003.18.10.1813
  20. A. K. Gain and B. T. Lee, Materials Science and Engineering: A, 419, 269 (2006). https://doi.org/10.1016/j.msea.2005.12.033
  21. B. T. Lee, I. C. Kang, A. K. Gain, K. H. Kim and H. Y. Song, J. of the European Ceramic Society, 26, 3525 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.017
  22. Primer3 (v. 0.4.0) Pick primers from a DNA sequence, http://frodo.wi.mit.edu/primer3. Retrieved July 22, 2009.
  23. A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal and M. D. McKee, J. Biomed. Mater. Res., 40, 324 (1998). https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
  24. K. Webb, V. Hlady and P. A. Tresco, J. Biomed. Mater. Res., 49(3), 362 (2000). https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<362::AID-JBM9>3.0.CO;2-S
  25. M. Hott, B. Noel, D. Bernache-Assolant, C. Rey and P. J. Marie, J. Biomed. Mater. Res., 37, 508 (1997). https://doi.org/10.1002/(SICI)1097-4636(19971215)37:4<508::AID-JBM9>3.0.CO;2-P
  26. D. P. Pioletti, J. Muller and L. R. Rakotomanana, Biomechanics, 36, 131 (2003). https://doi.org/10.1016/S0021-9290(02)00301-9
  27. M. Bigerelle, K. Anselme and E. Dufresne, Biomol. Eng., 19, 79 (2002). https://doi.org/10.1016/S1389-0344(02)00048-5
  28. R. Rajaraman, D. E. Rounds, S. P. Yen and A. Rembaum, Exp. Cell Res., 88, 327 (1974). https://doi.org/10.1016/0014-4827(74)90248-1
  29. J. M. Schakenraad, H. J. Buscher, C. R. Wildevuur and J. Arends, J. Biomed. Mater. Res., 20, 773 (1986). https://doi.org/10.1002/jbm.820200609
  30. G. S. Stein and J. B. Lian, Endocr. Rev., 14(4), 424 (1993). https://doi.org/10.1210/edrv-14-4-424
  31. J. Y. Choi, B. H. Lee, K. B. Song, R. W. Park, I. S. Kim, K. Y. Sohn, J. S. Jo and H. M. Ryoo, J. Cell Biochem., 61(4), 609 (1996). https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A
  32. C. M. Giachelli and S. Steitz, Matrix Biology, 19, 615 (2000). https://doi.org/10.1016/S0945-053X(00)00108-6

Cited by

  1. Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold vol.38, pp.4, 2014, https://doi.org/10.3795/KSME-A.2014.38.4.371