DOI QR코드

DOI QR Code

Fabrication and Physicochemical Properties of Carbon/Titania/Bentonite Monolith for Architecture

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Song, Da-Ye (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Kim, Ha-Rry (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Park, Tong-So (Department of Architectural Engineering, Hanseo University)
  • Published : 2010.03.27

Abstract

In this study, we used activated carbon (AC) and titanium oxysulfate as a titanium precursor to prepare carbon/titania composites. We then mixed it with bentonite in different ratios to make a carbon/titania/bentonite monolith for use in architecture bricks by using Phenolic rosin (PR) as a bonding agent. The physicochemical properties of the prepared composites were analyzed by BET surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), self-cleaning effect and bactericidal tests. The BET surface areas increased as the ratio of carbon/titania composites increased. The SEM microscopy showed that the $TiO_2$ and bentonite were coated on the surface of the AC. The XRD patterns showed a mixture structure of anatase and rutile of $TiO_2$ with a clear $SiO_2$ structure. The EDX spectra of the carbon/titania/bentonite monolith confirmed the presence of various elements, namely C, O, Ti and Si, as well as other, impure elements. Moreover, to determine the self-cleaning effect of the carbon/titania/bentonite monolith, we used methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution under the irradiation of visible light. Accordingly, all of the samples had excellent degradation of the MB solution. Furthermore, it was observed that the composites with sunlight irradiation had a greater effect on E. coli than any other experimental conditions.

Keywords

References

  1. X. Z. Li and F. B. Li, Environ. Sci. Technol., 35, 2381 (2001). https://doi.org/10.1021/es001752w
  2. R. Zanella, S. Giorgio, C. R. Henry and C. Louis, J. Phys. Chem. B, 106, 7634 (2002). https://doi.org/10.1021/jp0144810
  3. H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li and Y. F. Lu, J. Am. Chem. Soc., 129, 4538 (2007). https://doi.org/10.1021/ja069113u
  4. V. Subramanian, E. E. Wolf and P. V. Kamat, J. Am. Chem. Soc., 126, 4943 (2004). https://doi.org/10.1021/ja0315199
  5. J. Y. Li, C. C. Chen, J. C. Zhao, H. Y. Zhu and J. Orthman, Appl. Catal. B, 37, 331 (2002). https://doi.org/10.1016/S0926-3373(02)00011-5
  6. J. Y. Li, C. C. Chen, J. C. Zhao, H. Y. Zhu and Z. Ding, Sci. China Series. B, 45, 445 (2002). https://doi.org/10.1360/02yb9057
  7. J. Matos, J. Laine and J. M. Herrman, J. Catal., 200, 10 (2001). https://doi.org/10.1006/jcat.2001.3191
  8. B. Tryba, A. W. Morawski and M. Inagaki, Appl. Catal. B, 41, 427 (2003). https://doi.org/10.1016/S0926-3373(02)00173-X
  9. C. H. Ao and S. C. Lee, Appl. Catal. B, 44, 191 (2003). https://doi.org/10.1016/S0926-3373(03)00054-7
  10. Y. C. Chiang and C. P. Huang, Carbon, 39, 523 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  11. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, Carbon, 41, 2619 (2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  12. G. M. Colon, C. Hidalgo and M. Macias, Appl. Catal. A, 259, 235 (2004). https://doi.org/10.1016/j.apcata.2003.09.036
  13. M. C. Lu and J. N. Chen, Chemosphere, 38, 617 (1999). https://doi.org/10.1016/S0045-6535(98)00204-5
  14. J. Arana and J. M. Dona, Appl. Catal. B, 44, 161 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3
  15. S. X. Liu, X. Y. Chen and X. Chen, J. Hazard. Mater., 143, 257 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.026
  16. W. C. Oh and M. L. Chen, J. Ceram. Process. Res., 9, 100 (2008).
  17. W. C. Oh, M. L. Chen and C. S. Lim, J. Cera. Process. Res., 8, 119 (2007).
  18. W. C. Oh, J. S. Bae, M. L. Chen and Y. S. Ko, Analy. Sci. Technol., 19, 376 (2006).
  19. W. C. Oh, J. S. Bae and M. L. Chen, Bull. Korean Chem. Soc., 27, 1423 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1423
  20. M. L. Chen, J. S. Bae, W. C. Oh, Analy. Sci. Technol., 19, 460 (2006).
  21. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, Carbon, 41, 2619 (2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  22. M. L. Chen, J. S. Bae and W. C. Oh, Analy. Sci. Technol., 19, 301 (2006).
  23. M. L. Chen, W. C. Oh, J. of Korean Association Crystal Growth, 17, 23 (2007).
  24. W. C. Oh and M. L. Chen, Bull. Korean Chem. Res., 29, 159 (2008). https://doi.org/10.5012/bkcs.2008.29.1.159
  25. M. L. Chen, F. J. Zhang and W. C. Oh, New Carbon Materials, 24, 159 (2009). https://doi.org/10.1016/S1872-5805(08)60045-1
  26. W. C. Oh and T. S. Park, J. Ind. Eng. Chem., 11, 671 (2005). https://doi.org/10.1021/ie50115a020