DOI QR코드

DOI QR Code

Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna

  • Park, Sun-Young (University of Seoul/Faculty of Environmental engineering, College of University of Seoul) ;
  • Choi, Jin-Hee (University of Seoul/Faculty of Environmental engineering, College of University of Seoul)
  • Published : 2010.03.31

Abstract

Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.

Keywords

References

  1. Rand BP, Peumans P, Forrest SR. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 2004;96:7519-7526. https://doi.org/10.1063/1.1812589
  2. Zhai HJ, Sun DW, Wang HS. Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol. 2006;6:1968-1972. https://doi.org/10.1166/jnn.2006.320
  3. Yamamoto S, Watarai H. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir 2006;22:6562-6569. https://doi.org/10.1021/la0603119
  4. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712-1720. https://doi.org/10.1128/AEM.02218-06
  5. Maynard A, Michelson E. The Nanotechnology Consumer Product Inventory, Project on Emerging Nanotechnology, Woodrow Wilson International Center for Scholars [Internet]. Washington, DC; c2010 [cited 2006 Mar 23]. Available from: http://www.nanotechproject.org/inventories/consumer/.
  6. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126-134.
  7. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005;88:412-419. https://doi.org/10.1093/toxsci/kfi256
  8. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005;19:975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  9. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY,Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005;155:377-384. https://doi.org/10.1016/j.toxlet.2004.11.004
  10. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007;41:4158-4163. https://doi.org/10.1021/es062629t
  11. Eom HJ, Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 2009;187:77-83. https://doi.org/10.1016/j.toxlet.2009.01.028
  12. Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ. Sci. Pollut. Res. 2006;13:225-232. https://doi.org/10.1065/espr2006.06.311
  13. Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ. Toxicol. Chem. 2006;25:1132-1137. https://doi.org/10.1897/05-278R.1
  14. Handy RD, Shaw BJ. Ecotoxicity of nanomaterials to fish:challenges for ecotoxicity testing. Integr. Environ. Assess.Manag. 2007;3:458-460.
  15. Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC (70)Hx). Environ. Sci. Technol. 2007;41:4465-4470. https://doi.org/10.1021/es062146p
  16. Houk VS, Waters MD. Genetic toxicology and risk assessment of complex environmental mixtures. Drug Chem. Toxicol.1996;19:187-219. https://doi.org/10.3109/01480549608998234
  17. Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: a review. Mutat. Res.-Rev. Mut. Res. 2004;567:109-149. https://doi.org/10.1016/j.mrrev.2004.08.003
  18. Nehls S, Segner H. Comet assay with the fish cell line rainbow trout gonad-2 for in vitro genotoxicity testing of xenobiotics and surface waters. Environ. Toxicol. Chem.2005;24:2078-2087. https://doi.org/10.1897/04-301R.1
  19. Giesy JP, Graney RL, Newsted JL, et al. Comparison of three sediment bioassay methods using detroit river sediments. Environ. Toxicol. Chem. 1988;7:483-498. https://doi.org/10.1002/etc.5620070608
  20. Atienzar FA, Cheung VV, Jha AN, Depledge MH. Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol. Sci. 2001;59:241-250. https://doi.org/10.1093/toxsci/59.2.241
  21. Park SY, Choi J. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environ. Int. 2007;3:817-822.
  22. Lee SW, Park K, Hong J, Choi J. Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem.2008;27:1118-1127. https://doi.org/10.1897/07-219.1
  23. OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna acute immobilization test 202. OECD; 1984. Available from: http://puck. sourceoecd.org/vl=2991300/cl=33/nw=1/rpsv/ij/oecdjourn als/1607310x/v1n2/s3/p1.
  24. OECD Guidelines for testing of chemicals, section 2. Effects on biotic systems, Daphnia magna reproduction test 211. OECD; 1998. Available from: http://puck.sourceoecd. org/vl=2991300/cl=33/nw=1/rpsv/ij/oecdjournals/1607310 x/v1n2/s12/p1.
  25. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low-levels of dna damage in individual cells. Exp. Cell Res. 1988;175:184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  26. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823-839. https://doi.org/10.1289/ehp.7339
  27. Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006;92:174-185. https://doi.org/10.1093/toxsci/kfj197
  28. Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N. Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2008;43:1167-1173. https://doi.org/10.1080/10934520802171675
  29. Yin H, Too HP, Chow GM. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005;26:5818-5826. https://doi.org/10.1016/j.biomaterials.2005.02.036
  30. Cotelle S, Ferard JF. Comet assay in genetic ecotoxicology: A review. Environ. Mol. Mutagen. 1999;34:246-255. https://doi.org/10.1002/(SICI)1098-2280(1999)34:4<246::AID-EM4>3.0.CO;2-V
  31. Okamura H, Omori M, Luo R, Aoyama I, Liu D. Application of short-term bioassay guided chemical analysis for water quality of agricultural land run-off. Sci. Total Environ.1999;234:223-231. https://doi.org/10.1016/S0048-9697(99)00263-6
  32. Kikuchi M, Sasaki Y, Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna. Ecotoxicol. Environ. Saf. 2000;47:239-245. https://doi.org/10.1006/eesa.2000.1958
  33. Lee SB, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem. 2006;25:3006-3014. https://doi.org/10.1897/05-601R1.1
  34. Ji JH, Jung JH, Kim SS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2007;19:857-871. https://doi.org/10.1080/08958370701432108
  35. Hidalgo E, Dominguez C. Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol. Lett. 1998;98:169-179. https://doi.org/10.1016/S0378-4274(98)00114-3
  36. Clement JL, Jarrett PS. Antibacterial silver. Met. Based Drugs 1994;1:467-482. https://doi.org/10.1155/MBD.1994.467
  37. Silver S. Bacterial resistances to toxic metal ions - A review. Gene 1996;179:9-19. https://doi.org/10.1016/S0378-1119(96)00323-X
  38. Roh JY, Sim SJ, Yi J, et al. Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environ. Sci. Technol. 2009;43:3933-3940. https://doi.org/10.1021/es803477u

Cited by

  1. Potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the Ag body burden in individual Daphnia magna specimens exposed to Ag nanoparticles vol.5, pp.5, 2013, https://doi.org/10.1039/c2ay26456k
  2. -Based Nanocomposites on Their Biological Activity vol.12, pp.6, 2015, https://doi.org/10.1111/ijac.12340
  3. Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles vol.31, pp.7, 2014, https://doi.org/10.1007/s11814-014-0051-1
  4. Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research vol.49, pp.13, 2014, https://doi.org/10.1080/10934529.2014.938536
  5. Ecotoxicological Effect of Sublethal Exposure to Zinc Oxide Nanoparticles on Freshwater Snail Biomphalaria alexandrina vol.67, pp.2, 2014, https://doi.org/10.1007/s00244-014-0020-z
  6. from a freshwater algal diet and the impact of phosphate availability vol.8, pp.3, 2014, https://doi.org/10.3109/17435390.2013.778346
  7. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment? vol.8, pp.5, 2014, https://doi.org/10.3109/17435390.2013.818173
  8. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129039
  9. , as determined by the comet assay pp.07307268, 2018, https://doi.org/10.1002/etc.3944
  10. Size-Dependent Cytotoxicity of Thiolated Silver Nanoparticles Rapidly Probed by using Differential Pulse Voltammetry vol.3, pp.8, 2016, https://doi.org/10.1002/celc.201600211
  11. vol.125, pp.2, 2018, https://doi.org/10.1111/jam.13776
  12. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells vol.44, pp.21, 2010, https://doi.org/10.1021/es1020668
  13. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles vol.32, pp.11, 2012, https://doi.org/10.1002/jat.2780
  14. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna vol.10, pp.None, 2012, https://doi.org/10.1186/1477-3155-10-14
  15. Genotoxic effects of Ag2S and CdS nanoparticles in blue mussel (Mytilus edulis) haemocytes vol.30, pp.8, 2010, https://doi.org/10.1080/02757540.2014.894989
  16. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials vol.6, pp.None, 2015, https://doi.org/10.3762/bjnano.6.183
  17. Metallic, metal oxide, and metalloid nanoparticles toxic effects on freshwater microcrustaceans: An update and basis for the use of new test species vol.93, pp.11, 2010, https://doi.org/10.1002/wer.1637
  18. Synthesis of zinc oxide and silver nanoparticles using ficus palmata - Forssk leaf extracts and assessment of antibacterial activity vol.26, pp.6, 2010, https://doi.org/10.4491/eer.2020.454