DOI QR코드

DOI QR Code

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J. (Institute of Physical Chemistry, Justus-Liebig-University) ;
  • Lee, D.K. (Institute of Physical Chemistry, Justus-Liebig-University)
  • Published : 2010.03.31

Abstract

The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.

Keywords

References

  1. K. L. Scrivener, “Historical and Present Day Applications of Calcium Aluminate Cements,” pp. 3-23 in Calcium Aluminate Cements 2001, ed. R. J. Mangabhai and F. P. Glasser, IOM communications Ltd., London, 2001.
  2. M. Lacerda, J. T. S. Irvine, F. P. Glasser, and A. R. West, “High Oxide Ion Conductivity in $Ca_{12}Al_{14}O_{33}$,” Nature, 332 525-26 (1988). https://doi.org/10.1038/332525a0
  3. J. Jeevaratnam, F. P. Glasser, and L. S. D. Glasser, “Anion Substitution and Structure of $12CaO.7Al_2O_3$,” J. Am. Ceram. Soc., 47 105-6 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb15669.x
  4. H. B. Bartl and T. Scheller, Neues Jahrb. Mineral., Monatsh., 35 547-52 (1970).
  5. J. T. S. Irvine and A. R. West, J. Appl. Electrochem., 19 410-12 (1989). https://doi.org/10.1007/BF01015244
  6. M. Lacerda, A. R. West, and J. T. S. Irvine, “Electrical Properties of $Ca_{12}Al_{14}O_{33}$: Effect of Hydrogen Reduction,” Solid State Ionics, 59 257-62 (1993). https://doi.org/10.1016/0167-2738(93)90059-C
  7. P. V. Sushko, A. L. Shluger, K. Hayashi. M. Hirano, and H. Hosono, “Electron Localization and a Confined Electron Gas in Nanoporous Inorganic Electrides,” Phys. Rev. Lett., 91 126401 (2003). https://doi.org/10.1103/PhysRevLett.91.126401
  8. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, “Light-Induced Conversion of an Insulating Refractory Oxide into a Persistent Electronic Conductor,” Nature, 419 462-65 (2002). https://doi.org/10.1038/nature01053
  9. S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, “High-Density Electron Anions in a Nanoporous Single Crystal: $[Ca_{24}Al_{28}O_{64}]^{4+}(4e-)$,” Science, 301 626-29 (2003). https://doi.org/10.1126/science.1083842
  10. P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, and H. Hosono, “Role of Hydrogen Atoms in the Photoinduced Formation of Stable Electron Centers in H-doped $12CaO.7Al_2O_3$,” Phys. Rev. B, 73 045120 (2006). https://doi.org/10.1103/PhysRevB.73.045120
  11. P. V. Sushko, A. L. Shluger, M. Hirano, and H. Hosono, “From Insulator to Electride: A Theoretical Model of Nanoporous Oxide $12CaO.7Al_2O_3$,” J. Am. Chem. Soc., 129 942-51 (2007). https://doi.org/10.1021/ja066177w
  12. S. Matsuishi, S. W. Kim, T. Kamiya, M. Hirano, and H. Hosono, “Localized and Delocalized Electrons in Room-Temperature Stable Electride $[Ca_{24}Al_{28}O_{64}]^{4+}(O2-)_{2-x}(e-)_{2x}$: Analysis of Optical Reflectance Spectra,” J. Phys. Chem. C, 112 4753-60 (2008) https://doi.org/10.1021/jp711631j
  13. J. E. Medvedeva, A. J. Freeman, M. I. Bertoni, and T. O. Mason, “Electronic Structure and Light-Induced Conductivity of a Transparent Refractory Oxide,” Phys. Rev. Lett., 93 016408 (2004). https://doi.org/10.1103/PhysRevLett.93.016408
  14. J. E. Medvedeva and A. J. Freeman, “Hopping versus Bulk Conductivity in Transparent Oxides: $12CaO.7Al_2O_3$,” Appl. Phys. Lett., 85 955-57 (2004).
  15. Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “Is Mayenite without Clathrated Oxygen an Inorganic Electride?,” Angew, Chem. Int. Ed., 43 6479-82 (2004). https://doi.org/10.1002/anie.200461200
  16. L. Palacios, A. Cabeza, S. Bruque, S. Garcia-Granda, and M. A. G. Aranda, “Structure and Electrons in Mayenite Electrides,” Inorg. Chem., 47 2661-67 (2008). https://doi.org/10.1021/ic7021193
  17. H. Hosono and Y. Abe, “Occurrence of Superoxide Radical Ion in Crystalline Calcium Aluminate $12CaO.7Al_2O_3$ Prepared via Solid-State Reactions,” Inorg, Chem., 26 1192-95 (1987). https://doi.org/10.1021/ic00255a003
  18. K. Hayashi, M. Hirano, S. Matsuishi and H. Hosono, “Microporous Crystal $12CaO.7Al_2O_3$ Encaging Abundant O- Radicals,” J. Am. Chem. Soc., 124 738-39 (2002). https://doi.org/10.1021/ja016112n
  19. J. A. Imlach, L. S. D. Glasser, and P. F. Glasser, “Excess Oxygen and the Stability of $12CaO.7Al_2O_3$,” Cement Conc. Res., 1 57-61 (1971). https://doi.org/10.1016/0008-8846(71)90083-4
  20. D.-K. Lee, L. Kogel, S. G. Ebbinghaus, I. Valov, H.-D. Wiemhoefer, M. Lerch, and J. Janek, “Defect Chemistry of the Cage Compound, $Ca_{12}Al_{14}O_{33-\delta}$ - Understanding the Route from a Solid Electrolyte to a Semiconductor and Electride,” Phys. Chem. Chem. Phys., 11, 3105-14 (2009). https://doi.org/10.1039/b818474g
  21. S. W. Kim, R. Tarumi, H. Iwasaki, H. Ohta, M. Hirano, and H. Hosono, “Thermal Conductivity and Seebeck Coefficient of $12CaO.7Al_2O_3$ Electride with a Cage Structure,” Phys. Rev. B, 80 075201 (2009). https://doi.org/10.1103/PhysRevB.80.075201
  22. J. T. S. Irvine, M. Lacerda, and A. R. West, “Oxide Ion Conductivity in $Ca_{12}Al_{14}O_{33}$,” Mat. Res. Bull., 23 1033-38 (1988). https://doi.org/10.1016/0025-5408(88)90059-1
  23. J.-H. Park and R. N. Blumenthal, “Electronic Transport in 8 Mole Percent $Y_2O_3-ZrO_2$,” J. Electrochem. Soc., 136 2867-76 (1989). https://doi.org/10.1149/1.2096302
  24. M. Mogensen, T. Lindegaard, U. R. Hansen, and G.. Mogensen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped $CeO_2$,” J. Electrochem. Soc., 141 2122-28 (1994). https://doi.org/10.1149/1.2055072
  25. S.-W. Kim, K. Hayashi, M. Hirano, and H. Hosono, “Electron Carrier Generation in a Refractory Oxide $12CaO.7Al_2O_3$ by Heating in Reducing Atmosphere: Conversion from an Insulator to a Persistent Conductor,” J. Am. Ceram. Soc., 89 3294-98 (2006). https://doi.org/10.1111/j.1551-2916.2006.01213.x
  26. H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and Oxygen Mobility in Mayenite ($Ca_{12}Al_{14}O_{33}$): A High-Temperature Neutron Powder Diffraction Study,” Acta Cryst., B63 675-82 (2007).
  27. K. Hayashi, S. Matsuishi, M. Hirano, and H. Hosono, “Formation of Oxygen Radicals in $12CaO.7Al_2O_3$: Instability of Extraframework Oxide Ions and Uptake of Oxygen Gas,” J. Phys. Chem. B, 108 8920-25 (2004). https://doi.org/10.1021/jp037916n
  28. O. Trofymluk, Y. Toda, H. Hosono, and A. Navrotsky, “Energetics of Formation and Oxidation of Microporous Calcium Aluminates: A New Class of Electrides and Ionic Conductors,” Chem. Mater., 17 5574-79 (2005). https://doi.org/10.1021/cm051662w
  29. P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, and H. Hosono, “Mechanisms of Oxygen Ion Diffusion in a Nanoporous Complex Oxide $12CaO.7Al_2O_3$,” Phys. Rev. B, 73 014101 (2006). https://doi.org/10.1103/PhysRevB.73.014101
  30. K. Kajihara, S. Matsuishi, K. Hayashi, M. Hirano, and H. Hosono, “Vibrational Dynamics and Oxygen Diffusion in a Nanoporous Oxide Ion Conductor $12CaO.7Al_2O_3$ Studied by ${18}^O$ Labeling and Micro-Raman Spectroscopy,” J. Phys. Chem. C, 111 14855-61 (2007). https://doi.org/10.1021/jp074248n
  31. S. W. Kim, S. Matsuishi, T. Nomura, Y. Kubota, M. Tanaka, K. Hayashi, T. Kamiya, M. Hirano, and H. Hosono, “Metallic State in a Lime−Alumina Compound with Nanoporous Structure,” Nano Lett., 7 1138-43 (2007). https://doi.org/10.1021/nl062717b
  32. R. Strandbakke, C. Kongshaug, R. Haugsrud, and T. Norby, “High-Temperature Hydration and Conductivity of Mayenite, $Ca_{12}Al_{14}O_{33}$,” J. Phys. Chem. C, 113 8938-44 (2009). https://doi.org/10.1021/jp9009299
  33. K. Hayashi, M. Hirano, and H. Hosono, “Thermodynamics and Kinetics of Hydroxide Ion Formation in $12CaO.7Al_2O_3$,” J. Phys. Chem. B, 109 11900-906 (2005). https://doi.org/10.1021/jp050807j
  34. K. Hayashi, P. V. Sushko, A. L. Shluger, M. Hirano, and H. Hosono, “Hydride Ion as a Two-Electron Donor in a Nanoporous Crystalline Semiconductor $12CaO.7Al_2O_3$,” J. Phys. Chem. B, 109 23836-42 (2005). https://doi.org/10.1021/jp053990p

Cited by

  1. Optical Conductivity of Mayenite: From Insulator to Metal vol.119, pp.16, 2015, https://doi.org/10.1021/acs.jpcc.5b00736
  2. Phase transitions in mayenite vol.124, pp.3, 2016, https://doi.org/10.1007/s10973-016-5282-4
  3. Mixed Electrical Conduction of Calcium Aluminates Synthesized by Polymeric Precursors vol.22, pp.1, 2018, https://doi.org/10.1590/1980-5373-mr-2018-0271