DOI QR코드

DOI QR Code

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2010.03.31

Abstract

The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.

Keywords

References

  1. L. Q. Jing, Y. C. Qu, B.Q. Wang, S. D. Li, B. J. Jiang, L. B. Yang, W. Fu, H. G. Fu, and J. Z. Sun, “Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and Its Relationships with Photocatalytic Activity,” Sol. Energ. Mat. Sol. C., 90 1773-8 (2006). https://doi.org/10.1016/j.solmat.2005.11.007
  2. A. Fujishima, X. T. Zhang, and D. A. Tryk, “Heterogeneous Photocatalysis: Fromwater Photolysis to Applications in Environmental Cleanup,” Int. J. Hydrogen Energ., 32 2664-72 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.009
  3. O. S. Mohamed, S. A. Ahmed, M. F. Mostafa, and A. A. Abdel-Wahab, “Nanoparticles $TiO_2-photocatalyzed$ Oxidation of Selected Cyclohexyl Alcohols,” J. Photochem. Photobiol. A: Chem., 200 209-15 (2008). https://doi.org/10.1016/j.jphotochem.2008.07.015
  4. A. O. Ibhadon, G. M. Greenway, Y. Yue, P. Falaras, and D. Tsoukleris, “The Photocatalytic Activity and Kinetics of the Degradation of an Anionic Azo-dye in a UV Irradiated Porous Titania Foam,” Appl. Catal. B: Environ., 84 351-5 (2008). https://doi.org/10.1016/j.apcatb.2008.04.019
  5. M. R. Hoffmann, S. T. Martin,W. Y. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 95 [1] 69-96 (1995). https://doi.org/10.1021/cr00033a004
  6. A. L. Linsebigler, G.Q. Lu, and J. T. Yates Jr., “Photocatalysis on $TiO_2$ Surfaces Principles, Mechanisms, and Selected Results,” Chem. Rev., 95 [3] 735-58(1995). https://doi.org/10.1021/cr00035a013
  7. N. Negishi, T. Iyoda, K. Hashimoto, and A. Fujishima, “Preparation of Transparent $TiO_2$ Thin Film Photocatalyst and Its Photocatalytic Activity,” Chem. Lett., 24 [9] 841-3 (1995).
  8. I. Sopyan, M.Watanabe, and S. Murasawa, “Efficient $TiO_2$ Powder and Film Photocatalysts with Rutile Crystal Structure,” Chem. Lett., 1 69-71(1996).
  9. T. Torimoto, S. Ito, S. Kuwabata, and H. Yoneyama, “Effects of Adsorbents used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide,” Environ. Sci. Technol., 30 1275-81 (1996). https://doi.org/10.1021/es950483k
  10. X. Zhang, F. Zhang, and K. Y. Chan, “The Synthesis of Ptmodified Titanium Dioxide Thin Films by Microemulsion Templating, Their Characterization and Visible-light Photocatalytic Properties,” Mater. Chem. Phys., 97 384-9 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.060
  11. W. Choi, A. Termin, and M. Hoffmann, “The Role of Metal-Ion Dopants in Quantum-Sized $TiO_2$: Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics,” J. Phys. Chem., 98 13669-79 (1994). https://doi.org/10.1021/j100102a038
  12. W. Shockley and W.T. Read, “Statistics of the Recombinations of Holes and Electrons,” J. Phys. Rev., 87 835-42 (1952). https://doi.org/10.1103/PhysRev.87.835
  13. A. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides,” Sci., 293 269-71 (2001). https://doi.org/10.1126/science.1061051
  14. M. L. Chen, F. J. Zhang, and W. C. Oh, “Synthesis, Characterization, and Photocatalytic Analysis of $CNT/TiO_2$ Composites Derived from MWCNTs and Titanium Sources,” New Carbon Mate., 24 159-66 (2009). https://doi.org/10.1016/S1872-5805(08)60045-1
  15. W.C. Oh and M. L. Chen, “Synthesis and Characterization of $CNT/TiO_2$ Composites Thermally Derived from MWCNT and Ti-tanium(IV) n-butoxide,” Bull Korean Chem Soc., 29 159-65 (2008). https://doi.org/10.5012/bkcs.2008.29.1.159
  16. A. Sclafani and J. M. Herrmann, “Influence of Metallic Silver and of Platinum-silver Bimetallic Deposits on the Photocatalytic Activity of Titania (anatase and rutile) in Organic and Aqueous Media,” J. Photocham and Photobio A: Chem., 113 181-9 (1998).
  17. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy. “Photocatalytic Oxidation of Organics in Water using Pure and Silver-modified Titanium Dioxide Particles,” J. Photocham and Photobio A: Chem., 148 233-45 (2002). https://doi.org/10.1016/S1010-6030(02)00049-7
  18. M. Hamadanian, A.Reisi-Vanani, and A. Majedi “Preparation and Characterization of S-doped $TiO_2$ Nanoparticles, Effect of Calcination Temperature and Evaluation of Photocatalytic Activity,” Mater Chem and Phys., 116 376-82 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.039
  19. J. Arana, O. Gonzalez Diaz, J.M. Dona Rodriguez, J.A. Herrera Melian, C. Garriga i Cabo, J. Perez Pena, M. Carmen Hidalgo, and Jose A. Navio-Santos, “Role of $Fe^{3+}/Fe^{2+}$ as $TiO_2$ Dopant Ions in Photocatalytic Degradation of Carboxylic Acids,” J. Mol. Catal. A: Chem., 197 157-71 (2003).
  20. B.A. Holmen, M. I. Tejedor-Tejedor, and W.H. Casey, “Hydroxamate Complexes in Solution and at the Goethitewater Interface: A Cylindrical Internal Reflection Fourier Transform Infrared Spectroscopy Study,” Langmuir., 13 2197-206 (1997). https://doi.org/10.1021/la960944v
  21. K. Zhang, Z. D. Meng, W. B. Ko, and W. C. Oh, “Fabrication of $Fe-ACF/TiO_2$ Composites and Their Photonic Activity for Organic Dye,” Anal. Sci. Technol., 22 254-62 (2009)
  22. Y. F. Tu, S.Y. Huang, J. P. Sang, and X.W. Zou, “Preparation of Fe-doped $TiO_2$ Nanotube Arrays and Their Photocatalytic Activities under Visible Light,” Mater. Res. Bull., 45 224-9 (2010). https://doi.org/10.1016/j.materresbull.2009.08.020
  23. M. Alam Khan, S.l. Woo, and O. Bong Yang, “Hydrothermally Stabilized Fe(III) Doped Titania Active under Visible Light for Water Splitting Reaction,” Inter. J. Hydrogen. Energy., 33 5345-51 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.119
  24. Y. B. Xie and C. W. Yuan, “Visible-light Responsive Cerium Ion Modified Titania Sol and Nanocrystallites for X-3B Dye Photodegradation,” Appl. Catal. B: Environ., 46 251-9 (2003). https://doi.org/10.1016/S0926-3373(03)00211-X
  25. Y. B. Xie and C.W. Yuan, “Photocatalysis of Neodymium Ion Modified $TiO_2$ Sol under Visible Light Irradiation,” Appl. Surf. Sci., 221 17-24 (2004). https://doi.org/10.1016/S0169-4332(03)00945-0
  26. P. Serp, M. Corrias, and P. Kalck, “Carbon Nanotubes and Nanofibers in Catalysis,” Appl. Catal. A: General., 253 337-58 (2003). https://doi.org/10.1016/S0926-860X(03)00549-0
  27. Y. Zhang, N. Kohler, and M. Q. Zhang, “Surface Modification of Superparamagnetic Magnetite Nanoparticles and Their Intracellular Uptake,” Biomater., 23 1553-61 (2002). https://doi.org/10.1016/S0142-9612(01)00267-8
  28. Z. Q. Yu and S. C. Chuang, “The Effect of Pt on the Photocatalytic Degradation Pathway of Methylene Blue over $TiO_2$ under Ambient Conditions,” Appl. Catal. B: Environ., 83 277-85 (2008). https://doi.org/10.1016/j.apcatb.2008.01.040
  29. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic Degradation Pathway of Methylene blue in Water,” Appl. Catal. B: Environ., 31 145-57 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  30. T. Y. Han, C. F. Wu, and C. T. Hsieh, “Hydrothermal Synthesis and Visible Light Photocatalysis of Metal-doped Titania Nanoparticles,” J. Vac. Sci. Technol. B., 25 430-5 (2007). https://doi.org/10.1116/1.2714959
  31. T. Z. Tong, J. L. Zhang, B. Z. Tian, F. Chen, and D. N. He, “Preparation of $Fe^{3+}-doped$ $TiO_2$ Catalysts by Controlled Hydrolysis of Titanium Alkoxide and Study on Their Photocatalytic Activity for Methyl Orange Degradation,” J. Hazard. Mater., 155 572-9 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.106
  32. Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi and K. Mogyorosi, “Synthesis, Structure and Photocatalytic Properties of Fe(III)-doped $TiO_2$ Prepared from $TiCl_3$,” Appl. Catal. B: Environ., 81 27-37 (2008). https://doi.org/10.1016/j.apcatb.2007.11.041
  33. W. Y. Teoh, R. Amal, L. Mädler, and S. E. Pratsinis, “Flame Sprayed Visible Light-active $Fe-TiO_2$ for Photomineralization of Oxalic Acid,” Catal. Today., 120 203-13 (2007). https://doi.org/10.1016/j.cattod.2006.07.049

Cited by

  1. Composite and Photocatalytic Mechanism Derived from Organic Dye Decomposition vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.139