DOI QR코드

DOI QR Code

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong (School of Materials Science and Engineering, Inha University) ;
  • Yoon, Mi-Young (School of Materials Science and Engineering, Inha University) ;
  • Moon, Ji-Woong (Research Institute of Industrial Science & Technology) ;
  • Hwang, Hae-Jin (School of Materials Science and Engineering, Inha University)
  • Published : 2010.03.31

Abstract

A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

Keywords

References

  1. Y. Teraoka, H. M. Zhang, S. Furukawa, and N. Yamazoe, “Oxygen Permeation Through Perovskite-type Oxides,” Chem. Lett., 14 1743-46 (1985). https://doi.org/10.1246/cl.1985.1743
  2. P. N. Dyer, R. E. Richards, S. L. Russek, and D. M. Taylor, “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production,” Solid State Ionics, 134 21-33 (2000). https://doi.org/10.1016/S0167-2738(00)00710-4
  3. T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, and Y. Takita, “Fe Doped $LaGaO_3$ Perovskite Oxide as an Oxygen Separating Membrane for $CH_4$ Partial Oxidation,” Solid State Ionics, 152 709-14 (2002).
  4. C. Wagner, “Theory of tarnishing process,” Z. Phys. Chem., B21 25-41 (1933).
  5. K. Wiik, S. Aasland, H. L. Hansen, I. L. Tangen, and R. Odegard, “Oxygen Permeation in the System $SrFeO_{3-x}-SrCoO_{3-y}$,” Solid State Ionics, 152-53 675-80 (2002). https://doi.org/10.1016/S0167-2738(02)00408-3
  6. Y. Zeng and Y. S. Lin, “Stability and Surface Catalytic Properties of Fluorite-structured Yttria-doped Bismuth Oxide under Reducing Environment,” J. Catal., 182 30-6 (1999). https://doi.org/10.1006/jcat.1998.2313
  7. O. Buchler, J. M. Serra, W. A. Meulenberg, D. Sebold, And H. P. Buchkremer, “Preparation and properties of thin $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-\delta}$ Perovskitic Membranes Supported on Tailored Ceramic Substrates,” Solid State Ionics, 178 90-9 (2007).
  8. C. S. Chen, H. Kruidhof, H. J. M. Bouwmeester, H. Verweij, and A. J. Burggraaf, “Oxygen Permeation Through Oxygen Ion Oxide-noble Metal Dual Phase Composites,” Solid State Ionics, 86-8 569-72 (1996). https://doi.org/10.1016/0167-2738(96)00206-8
  9. Z. Wu and M. Liu, “Modeling of Ambipolar Transport Properties of Composite Mixed Ionic-electronic Conductors,” Solid State Ionics, 93 65-84 (1997). https://doi.org/10.1016/S0167-2738(96)00521-8
  10. T. J. Mazanec, T. L. Cable, and J. G. Frye, “Electrocatalytic Cells for Chemical Reaction,” Solid State Ionics, 53-6 111-18 (1992). https://doi.org/10.1016/0167-2738(92)90372-V
  11. J. Kim and Y. S. Lin, “Synthesis and Oxygen Permeation Properties of Ceramic-metal Dual-phase Membranes,” J. Membrane Sci., 167 123-33 (2000). https://doi.org/10.1016/S0376-7388(99)00273-2
  12. Y. Y. Liu and L. Hong, “Fabrication and characterization of $(Pd/Ag)-La_{0.2}Sr_{0.8}CoO_{3-\delta}$ Composite Membrane on Porous Asymmetric Substrates,” J. Membrane Sci., 224 137-50 (2003). https://doi.org/10.1016/j.memsci.2003.08.002
  13. H. Takamura, T. Kobayashi, T. Kasahara, and A. Kamegawa, M. Okada, “Oxygen Permeation and Methane Reforming Properties of Ceria-based Composite Membranes,” J. Alloys and Compounds, 408-12 1084-89 (2006). https://doi.org/10.1016/j.jallcom.2004.12.139
  14. I. Kagomiya, T. Iijima, and H. Takamura, “Oxygen Permeability of Nanocrystalline Ce_{0.8}Gd_{0.2}O_{1.9}-CoFe_2O_4$ Mixed-conductive Films,” J. Membrane Sci., 286 180-84 (2006). https://doi.org/10.1016/j.memsci.2006.09.032
  15. Q. Li, X. Zhu and W. Yang, “Single-step Fabrication of Asymmetric Dual-phase Composite Membranes for Oxygen Separation,” J. Membrane Sci., 325 11-5 (2008). https://doi.org/10.1016/j.memsci.2008.08.002
  16. E. Rios, J. -L. Gautier, G. Poillerat, and P. Chartier, “Mixed Valency Spinel Oxides of Transition Metals and Electrocatalysis: Case of the $Mn_xCo_{3-x}O_4$ System,” Electrochimica Acta, 44 1491-97 (1998). https://doi.org/10.1016/S0013-4686(98)00272-2
  17. E. Aukrust and A. Muan, “The Stabilities of $CoO.Al_2O_3$, $CoO.Cr_2O_3$, and $2CoO.SiO_2$, J. Am. Ceram. Soc., 46 358-360 (1963). https://doi.org/10.1111/j.1151-2916.1963.tb11749.x
  18. A. Petric and H. Ling, “Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures,” J. Am. Ceram. Soc., 90 1515-20 (2007). https://doi.org/10.1111/j.1551-2916.2007.01522.x
  19. V. V. Kharton, A. V. Kovalevsky, A. A. Taremchenko, F. M. Fiqueiredo, E. N. Naumovich, A. L. Shaulo, and F. M. B. Marques, “Surface Modification of $La_{0.3}Sr_{0.7}CoO_{3-\delta}$ Ceramic Membranes,” J. Membrane Sci., 195 277-87 (2002). https://doi.org/10.1016/S0376-7388(01)00567-1
  20. V. V. Kharton , F. M. Fiqueiredo, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, A. A. Yaremchenko, I.A. Bashmakov, and F. M. B. Marques, “Processing, Microstructure and Properties of $LaCoO_{3-\delta}$ Ceramics,” J. Euro. Ceram. Soc., 21 2301-09 (2001). https://doi.org/10.1016/S0955-2219(01)00199-6
  21. Y. S. Lin, W. J. Wang, and J. H. Han, “Oxygen Permeation Through Thin Mixed-conducting Solid Oxide Membranes,” AIChE Journal, 40 786-98. https://doi.org/10.1002/aic.690400506

Cited by

  1. Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena vol.48, pp.6, 2011, https://doi.org/10.4191/kcers.2011.48.6.549
  2. Synthesis, oxygen permeation, and electrical properties of (La1−xSrx)(Mn0.85Fe0.05Co0.05Ni0.05)O3+δ -YSZ composite vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0910-4
  3. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors vol.22, pp.5, 2013, https://doi.org/10.1007/s11666-013-9922-y
  4. Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C vol.49, pp.18, 2014, https://doi.org/10.1007/s10853-014-8357-2