DOI QR코드

DOI QR Code

Functional Characterization of cAMP-Regulated Gene, CAR1, in Cryptococcus neoformans

  • Jung, Kwang-Woo (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University) ;
  • Maeng, Shin-Ae (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University) ;
  • Bahn, Yong-Sun (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University)
  • 발행 : 2010.03.31

초록

The cyclic AMP (cAMP) pathway plays a major role in growth, sexual differentiation, and virulence factor synthesis of pathogenic fungi. In Cryptococcus neoformans, perturbation of the cAMP pathway, such as a deletion in the gene encoding adenylyl cyclase (CAC1), causes defects in the production of virulence factors, including capsule and melanin production, as well as mating. Previously, we performed a comparative transcriptome analysis of the Ras- and cAMP- pathway mutants, which revealed 163 potential cAMP-regulated genes (38 genes at a 2-fold cutoff). The present study characterized the role of one of the cAMP pathway-dependent genes (serotype A identification number CNAG_ 06576.2). The expression patterns were confirmed by Northern blot analysis and the gene was designated cAMP-regulated gene 1 (CAR1). Interestingly, deletion of CAR1 did not affect biosynthesis of any virulence factors and the mating process, unlike the cAMP-signaling deficient cac1$\Delta$ mutant. Furthermore, the car1$\Delta$ mutant exhibited wild-type levels of the stress-response phenotype against diverse environmental cues, indicating that Car1, albeit regulated by the cAMP-pathway, is not essential to confer a cAMP-dependent phenotype in C. neoformans.

키워드

참고문헌

  1. Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol 2007;5:57-69. https://doi.org/10.1038/nrmicro1578
  2. Pukkila-Worley R, Alspaugh JA. Cyclic AMP signaling in Cryptococcus neoformans. FEMS Yeast Res 2004;4:361-7. https://doi.org/10.1016/S1567-1356(03)00241-1
  3. Pan X, Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:4874-87. https://doi.org/10.1128/MCB.19.7.4874
  4. Robertson LS, Fink GR. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 1998;95:13783-7. https://doi.org/10.1073/pnas.95.23.13783
  5. Sass P, Field J, Nikawa J, Toda T, Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1986;83:9303-7. https://doi.org/10.1073/pnas.83.24.9303
  6. Wilson RB, Tatchell K. SRA5 encodes the low-Km cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol 1988;8:505-10.
  7. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 1999;96:79-84. https://doi.org/10.1073/pnas.96.1.79
  8. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995;8:515-48.
  9. Hoang LM, Maguire JA, Doyle P, Fyfe M, Roscoe DL. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J Med Microbiol 2004;53:935-40. https://doi.org/10.1099/jmm.0.05427-0
  10. Chang YC, Penoyer LA, Kwon-Chung KJ. The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 1996;64:1977-83.
  11. Nosanchuk JD, Rudolph J, Rosas AL, Casadevall A. Evidence that Cryptococcus neoformans is melanized in pigeon excreta: implications for pathogenesis. Infect Immun 1999; 67:5477-9.
  12. Aksenov SI, Babyeva IP, Golubev VI. On the mechanism of adaptation of micro-organisms to conditions of extreme low humidity. Life Sci Space Res 1973;11:55-61.
  13. Rosas AL, Casadevall A. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 1997;153:265-72. https://doi.org/10.1016/S0378-1097(97)00239-5
  14. Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 1995;63:3131-6.
  15. Chang YC, Kwon-Chung KJ. Complementation of a capsuledeficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 1994;14:4912-9. https://doi.org/10.1128/MCB.14.7.4912
  16. Kwon-Chung KJ, Polacheck I, Popkin TJ. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 1982;150:1414-21.
  17. Alspaugh JA, Pukkila-Worley R, Harashima T, Cavallo LM, Funnell D, Cox GM, et al. Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 2002;1:75-84. https://doi.org/10.1128/EC.1.1.75-84.2002
  18. Bahn YS, Hicks JK, Giles SS, Cox GM, Heitman J. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 2004;3:1476-91. https://doi.org/10.1128/EC.3.6.1476-1491.2004
  19. Hicks JK, Bahn YS, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase Amediated negative feedback loop in Cryptococcus neoformans. Eukaryot Cell 2005;4:1971-81. https://doi.org/10.1128/EC.4.12.1971-1981.2005
  20. Xue C, Hsueh YP, Chen L, Heitman J. The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 2008;70:379-95. https://doi.org/10.1111/j.1365-2958.2008.06417.x
  21. Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, et al. Comparative transcriptome analysis reveals novel roles of the Ras- and cAMP-signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 2010. DOI:10.1128/EC.00309-09.
  22. Perfect JR, Ketabchi N, Cox GM, Ingram CW, Beiser CL. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol 1993;31:3305-9.
  23. Nielsen K, Cox GM, Wang P, Toffaletti DL, Perfect JR, Heitman J. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and ${\alpha}$ isolates. Infect Immun 2003;71:4831-41.
  24. Bahn YS, Kojima K, Cox GM, Heitman J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell 2005;16:2285-300. https://doi.org/10.1091/mbc.E04-11-0987
  25. Hicks JK, D'Souza CA, Cox GM, Heitman J. Cyclic AMPdependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 2004;3:14-26. https://doi.org/10.1128/EC.3.1.14-26.2004
  26. Kim MS, Kim SY, Yoon JK, Lee YW, Bahn YS. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res Commun 2009;390:983-8. https://doi.org/10.1016/j.bbrc.2009.10.089
  27. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current protocols in molecular biology. New York: Greene Publishing Associates and John Wiley & Sons; 1994.
  28. Garay-Arroyo A, Covarrubias AA. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 1999;15:879-92. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q
  29. Palmer DA, Thompson JK, Li L, Prat A, Wang P. Gib2, a novel $G{\beta}$-like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J Biol Chem 2006;281:32596-605. https://doi.org/10.1074/jbc.M602768200
  30. Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, et al. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 2005;4:190-201. https://doi.org/10.1128/EC.4.1.190-201.2005