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요  약 

본 논문은 복잡한 도로 환경에서 차선을 정확하게 찾는 실시간 차선 검출법을 보인다. 기존의 많은 방법들은 게 후처리 

과정에서 차선 안쪽에 존재하는 잡음을 찾아 차선의 치를 찾지만, 제안하는 방법은 특징 추출 단계에서 가능한 많은 잡

음을 제거하므로 후처리 과정에서 검색 역을 최소화한다. grid기반 모폴로지 연산은 우선 심 역을 능동 으로 생성한 

후, 모폴로지의 닫기 연산을 통해 에지 들을 연결한다. 그리고 방향성 에지 연결 기법을 통하여 유효한 방향에지를 찾고 

사 에 구해진 상 내 차선의 높이와 두 차선 간의 폭 계를 이용하여 두 개의 차선을 군집화한다. 마지막으로 차선의 

색상은 YUV색상 공간에서 두 개의 연결된 에지 안쪽을 검사하여 Bayesian확률 모델을 사용하여 추정한다. 제안하는 방법

의 실험 결과는 다수의 불필요한 에지 군집이 존재하는 복잡한 도로 환경에서 효과 으로 도로 에지를 감별하 으며, 제안

하는 알고리즘은 해상도 320×240 상으로 10ms/frame의 속도에서 약92%의 정확도를 보 다.

키워드 : 차선 검출, Grid기반 모폴리지, 방향성 에지 연결, 라인-템 릿 매칭. 

Abstract

This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex 

road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit 

lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as 

possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To 

achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) 

dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link 

edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs 

by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside 

edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. 

Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter 

edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average 

speed of 10ms/frame at the image size of 320×240.

Key Words :  Lane detection, Grid-based morphology, Directional edge-linking, Line-template matching.

1. Introduction

Lane detection plays an important role in many appli-

cations like driving-assistant systems, self-guided ve-

hicles, and surveillance systems. Many approaches for 

lane detection have been proposed and most of them fol-

low a similar flow[1]. First, lane-mark feature points are 

extracted from the road images. Next, a post-processing 

stage starts to remove outliers and fit the lane-mark 

feature points to a certain kind of lane model. Many lane 

models and fitting algorithms have been proposed. 

J.McDonald[2] used Hough transform to fit a linear 

model. K.Kaliyaperumal[3] proposed Metropolis fitting 

algorithm to fit a deformable template model. Y.Wang[4] 

developed a B-snake lane model with iterative mean 

square error minimization to fit the parameters. Z.Kim[5] 

performed lane detection by using cubic-spline model 

with RANSAC (RANdom Sample Consensus) algorithm 

for fitting. Parabolic model is used by J.C. McCall[1] with 

a statistical and motion based fitting algorithm. In addi-

tion, Q.Li[6] proposed a lane detection algorithm which 

uses adaptive randomized Hough transform to fit the lane 

boundary without using any pre-defined lane model. 
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Instead of doing too much careful processing at 

lane-mark feature extraction stage, most of these meth-

ods tend to detect lane-mark features coarsely, while de-

pending on the complex fitting algorithm to remove a 

great deal of outliers for the determination of actual 

lane-mark positions. On one hand, iterative fitting with 

coarsely extracted feature points can be more robust in 

various road conditions for the guarantee of true lane 

feature existence in coarse feature sets. While on the 

other hand, large amount of feature points enlarge the 

searching space of iterative fitting algorithm dramati-

cally, resulting in a great increase of the computation 

cost at the post-processing stage. 

In order to limit the size of the feature space to re-

duce the computation cost at the post-processing stage, 

this paper places a higher value at lane-mark feature 

extraction stage, that is to identify true lane-mark 

edges accurately among various clutter edges on the 

road surface, so as to remove outliers as much as pos-

sible at the feature extraction stage. A kind of direc-

tional edge-link pair is proposed as a new lane-mark 

feature, and a directional edge-linking algorithm is de-

veloped to extract this kind of feature in a dynamic  

ROI(Region of Interest) generated by using grid-based 

morphology operation. At post-processing stage, a sim-

ple line-template matching method is used to fit the 

feature points without heavy iterations. A general flow-

chart of the proposed lane detection method is shown in 

Fig.1. As input of the detection system, lane images are 

obtained by using an on-board monocular color camera 

fixed at the front of the vehicle. The output of the de-

tection system considers both positions and types of 

lane-mark. 

 

Fig. 1. Flowchart of the lane detection method.

The rest of this paper is organized as follows: In 

section 2, dynamic ROI generation by using grid-based 

morphology is discussed. In section 3, directional 

edge-linking and grouping algorithm is presented. Lane 

fitting and type identification is introduced in section 4, 

including line-template matching, lane-switching de-

tection and lane-type estimation. Experimental results 

are presented in section 5, and final conclusions are 

made in section 6.

2. Grid-based ROI Generation

Based on intensity variation and color difference be-

tween lane-marks and the road surface, a grid-based 

morphology method is proposed in this paper to gen-

erate a smaller ROI automatically. A diagram of the 

proposed ROI generation method is shown in Fig.2.

Fig. 2. Flowchart of grid-based ROI generation.

The initial ROI area is set following the general 

method of excluding the top and bottom areas. Inside 

this initial region, a grid region, which is composed of 

1-pixel wide vertical and horizontal lines, is con-

structed, onto which the original image is reduced, as 

shown in Fig. 3 (1),(2). On this grid region, two sec-

ond-difference masks xG  and yG  are applied to R and B 

channels of RGB image in the horizontal and vertical 

directions separately. A pixel is retained only if the 

mean value of the separable convolution in R and B 

channel reaches a predefined threshold. The horizontal 

and vertical gradients H∇ , V∇  are defined in (1), where 

rI  represents R channel and bI  indicates B channel.
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Since lane-marks usually have specific colors like yel-

low, blue and white, and these color pixels usually have 

dominant values in the R and B channel. By applying 

second-difference operators to R and B channel sepa-

rately, and making the final pixel decision based on the 

separable convolution results in these two channels, 

grid-edge components that contain lane-mark pixels can 

be extracted efficiently, as shown in Fig.3 (3)(4). Based 

on the extracted grid-edge components, grid-cells are 

filled by using a dilation operation to the foreground pix-

els with a 10×10 square element, and the filled dilation 

region is the final ROI which contains lane-mark pixels. 

The final ROI results are shown in Fig.3 (5) (6). 

In addition, since the separable convolutions are con-

ducted on a grid-sampled image, the pixels involved in 

convolution calculations are much less than that in the 

original image. Therefore, this grid-based convolution 

and dilation operation can be executed very quickly. 

Table 1 shows the speed comparison between using 

dynamic ROI and fixed ROI. In Table 1, for simplifying, 

time complexity is described using the number of pixels 

that require assignment operations or arithmetic 

calculations. Without using dynamic ROI, the Sobel op-

erator has to be applied to almost every pixel in the 

fixed ROI. While grid down-sampling operation can re-

duce the number of pixels to 1/5 of the original amount, 

so that the following operations can work at the time 

complexity of T(n/5). 
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Operation Time complexity Processing time

2nd difference T(n/5) 0.18 ms

Grid dilation T(n/5) 0.23 ms

Sobel in 

dynamic ROI

T(n/5) 0.21 ms

Total T(3*n/5) 0.62 ms

Sobel in fixed 

ROI

T(n) 1.18 ms

Table 1. Processing-time comparison of using dynamic 

ROI and fixed ROI.

    

Fig. 3. ROI generation using grid-based dilation. 

3. Directional Edge-link Pairs 

Many lane-mark feature extraction methods have 

been proposed. Some use lane-mark textures and learn-

ing-based method to train a lane-mark classi-

fier[7].Other methods mostly depend on edges[8][9]. 

Edge-based methods can work well with either solid or 

dashed lane-marks, and can be largely invariant to illu-

mination changes. However, many edge-based techni-

ques can often fail in situations where many extraneous 

lines exist. The proposed edge-based feature extraction 

method is able to identify true lane-mark edges even in 

these difficult situations, which makes the lane de-

tection algorithm more adaptive to complex 

environments. Three steps, including edge detection, di-

rectional edge-linking with edge-gap closing, and 

edge-link pair grouping are used to obtain possible 

lane-mark edges as accurate as possible. 

3.1 Edge detection

In the edge detection step, a Sobel operator is firstly 

used to find edge-pixels inside the ROI. For the pixel 

set 'I  inside ROI, a Sobel operator is applied to com-

pute gradient amplitudes | ( * ') |∇ G I as defined in (2). 
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Local gradient orientations can also be found by 

checking the sign of ' xI G∗  and ' yI G∗ . Gradient ori-

entation features for left and right lane boundaries can 

be used to remove invalid edge-pixels for left and right 

lane-mark. In addition, they can also be used to identify 

inner and outer boundaries of lane-marks in the 

edge-link pair grouping stage. 

3.2 Directional edge-linking

After edge map is obtained, a directional edge-linking 

algorithm is used to find candidate edge-pixels which 

lie on lane-mark boundaries. Edge-linking is a very ef-

fective method to find object boundaries in certain 

geometries. In this paper, the general edge-linking al-

gorithm is extended to identify lane-mark edge geome-

try in a noisy edge map. 

Edge-link is defined as a vector which contains 5 

parameters , , , , ,< >head tailID P P L α . ‘ID’ is the label of this 

edge-link, ‘ headP ’ and ‘ tailP ’ is the starting point and end 

point, ‘L’ is the length, and ‘α ’ is the direction of this 

edge-link. The direction of edge-link is described by 

unit-direction and main-direction. The unit-direction is 

defined according to the orientations of one pixel’s 8 

neighborhoods, as shown in Fig.4. Based on the defi-

nition of unit-direction, the main-direction of edge-link 

is defined as the mean value of all unit- directions be-

tween every two neighboring pixels: /( 1)= −∑ iU Lα , where 

iU∑ represents the sum of all unit directions. An exam-

ple of main-direction calculation is illustrated in Fig.4.

Directional edge-linking algorithm is developed based 

on an 8-neighborhood edge-pixel tracing algorithm. The 

directional edge-linking algorithm is composed of two 

steps: starting point scan and edge-pixel tracing.

45 90 45 90 4 67 5( ) / .+ + + =

4590135

180

225 270 315

0

Fig. 4. The definition of edge-link direction.

 

During the edge-pixel tracing process, basic and ef-

fective unit-directions are introduced to guide the 

tracing. The definition of basic and unit directions are 

shown in Fig.4. 

The edge-point tracing process continues until one of 

the following two conditions are met: (1) No more con-

nected edge-pixels can be found. (2) The unit-direction 

of the next neighboring edge-pixel falls out of effective 

direction range. In either case, the current edge-link 

will terminate, and a new edge-link will be initialized in 
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the starting point scan process. Finally, when no more 

unlabeled starting points can be found, the whole 

edge-linking process will terminate, then the main-di-

rection and length of each edge-link are checked. The 

main-direction of edge-link should lie between 30°  to 

150°. The length of edge-link should be larger than a 

threshold value as well. All edge-links that violate this 

rule are not likely to be lane-mark edges and are 

therefore discarded. Some results of proposed 

edge-linking algorithm are shown in Fig.5. 

Comparing with the edge-linking algorithm based on 

chain-code as the one used in [10], the proposed direc-

tional edge-linking algorithm introduced unit-direction 

and main-direction to describe edge-link path in a 

much finer way, which is able to track many edge-link 

paths within the valid lane-mark direction range that 

chain-code based edge-linking algorithm can not 

capture.

Fig. 5. Directional edge-linking result. 

3.3 Directional edge-gap closing

The above directional edge-pixel linking algorithm 

works well on edge images obtained from an original 

resolution image with little noise. However, due to noise 

and pixel loss caused by down-sampling operation, 

some dashed lane-mark edges which appear in the far 

field of camera-sight will be broke up into many small 

disconnected segments. Since the lengths of these small 

links are usually under the edge-link length threshold, 

they can be easily filtered out as noise edge-links, 

which cause the loss of real lane-mark edges. This is 

illustrated in Fig.6.

Fig. 6. Directional edge-gap closing result. 

To deal with this problem, a directional edge-gap 

closing algorithm is added to produce more complete 

edge-links. After edge-links with valid orientations are 

obtained, the directional edge-gap closing step begins. 

In this step, edge-links are extended by adding new 

edge-pixels along the edge-link orientation to fill the 

possible gaps which split a complete edge-link. The 

maximum number of added points is determined by a 

user-defined value. Generally, 5 pixels are enough to fill 

the gaps between split edge-links. 

New edge-points are selected from the neighboring 

points of the starting point and end point of one 

edge-link along the edge-link orientations. As Fig.7 il-

lustrates, on a gradient image, for a given edge-link, 

three points 1G , 2G , and 3G , which lie in the effective di-

rection around tail point are considered as candidates 

for new edge-points. If the gradient values of 1G , 2G  and 

3G  are larger than a gap-closing threshold, then for 

each of these three candidate points, a gap-closing 

score is calculated as: 1 2 3max( , , )i i i
i i n n nM G G G G= + , where 

iG  indicates the gradient value at the ith candidate 

points, while 1 2 3, ,i i i
n n nG G G  refer to the gradient values at 

the three neighboring points around ith candidate points. 

The sum of the candidate point’s gradient and the max-

imum gradient of this point’s three neighbors is calcu-

lated as a gap-closing score iM . The point with the 

maximum gap-closing score is finally selected as the 

new edge-point to be added to the edge-link. This 

edge-link extension process will continue until one of 

the three following conditions is satisfied:

(1) The point in another edge-link is detected in the 

neighborhood of newly added edge-points. This means 

two edge-links meet each other, so that they are 

merged into one complete edge-link.

(2) The maximum number of new points is reached.

(3) There are no more points with gradient value 

larger than the minimum gap-closing threshold can be 

found.

1G2G

3G

1
1nG

2
1nG

3
1nG

1
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2
2nG

3
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3nG

2
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3
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Fig. 7. Directional edge-gap closing algorithm. 

After directional edge-gap closing, those disconnected 

small segments which belong to one lane-mark can be 

linked together as one edge-link. Then edge-link length 

is checked to discard those small edge-links with 

lengths below threshold. The effect of this directional 

edge-linking algorithm is shown in Fig.6. 
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3.4 Edge-link pair grouping

After candidate edge-links are obtained, edge-link 

pair grouping is carried out based on the distance be-

tween adjacent edge-links. If the distance satisfies the 

width of a lane-mark at certain height of the image, 

then the region enclosed by this pair of edge-links will 

be regarded as candidate lane-mark regions. 

In scanning, edge points with opposite gradient val-

ues along horizontal direction are selected as candidate 

matching points for lane boundaries. When a pair of 

potential matching points P1 and P2 are found, the hori-

zontal distance between P1 and P2 is calculated and 

compared with the corresponding width value in the 

look-up table. If satisfied, then the point counters of the 

edge-links which contain P1 and P2 will increase by 1.

 In every row of the edge-link image, the matching 

points P1 and P2 are searched and recorded in the point 

counters of their corresponding edge-links, a likelihood 

score is estimated as /k j is C E= ∑ ∑ , where jC∑  is the 

total number of edge-points recorded in the point coun-

ter of edge-link k, and iE∑  is the total number of 

edge-points which edge-link k contains. Finally, ad-

jacent candidate edge-links with opposite gradient di-

rections are grouped into pairs. And the region enclosed 

by edge-link pairs is regarded as candidate lane-mark 

regions. 

By scanning edge-links with lane-mark width, some 

edge-links caused by road signs or guardrails which 

have similar orientations as lane-mark edges, can be 

removed. Some results are shown in Fig.8.

Fig. 8. Directional edge-link pair grouping result.

4. Lane Fitting and Type Identification

After directional edge-linking and grouping, edge-link 

pairs that are most likely to be lane-mark boundaries can 

finally be decided. A simple line-template matching algo-

rithm is used here to fit the lane position very efficiently.

4.1 Line-template matching

In the coordinate system given in Fig.9, the line 

equation given in (3) is used for generating the 

line-templates. The line-template is determined by two 

points (x1, y1) and (x2, y2), which are located on this 

line. In Fig.9, line R is set as the range to which line 

models are fitted.

1 2 1
1

2 1

( )( )x x y yy y
x x

− −
= +

− (3)

Fig. 9. Line-template matching.

The line-template based fitting algorithm is com-

posed of two parts. The first part is searching range 

estimation. By extending every edge-link using a 

straight line, and calculating its intersection points on 

line R and the image boundaries, a cluster of inter-

section points on line R and the image boundaries can 

be obtained, and the distribution range of these inter-

section points can be estimated. As shown in Fig.9 (1), 

the range enclosed by X1 and X2 on line R, and the 

range enclosed by Y1 and Y2  set the searching range 

for right lane.

In the line-template generation and matching step, as 

is shown in Fig.9(2), for one point on line R starting 

from X1, a set of line-templates is generated based on 

equation (3) by simply connecting point on line R with 

every point on the right image boundary from Y1 to 

Y2. And on each line-template, the number of edge 

points which overlap with this line-template is calcu-

lated as the matching score of this line-template. After 

one set of line-templates is generated, the point on line 

R will move forward to the next point, and another set 

of line-templates is generated. Finally, when it moves 

to X2, the total number of line-template that are gen-

erated is (X2-X1)×(Y2-Y1). Among all those line-tem-

plates, the one with the highest matching score is se-

lected as the best matching template. 

4.2 Lane switching detection

The way to identify lane switching is to check the 

position of two end-points (x1, y1) and (x2, y2) of the 

fitted line. If two end-points of the right fitting-line is 

moving to the left of the middle-point of image, then it 

is regarded that the vehicle is switching to the right 

lane. When lane switching happens, the direction of 

lane-mark which the vehicle is crossing will be around 

90°, directional edge-linking algorithm can still work 

effectively in this case to get the boundaries of switch-
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False 

Detection

Miss

Detection

3000 2770
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85

(2.88%)

ing lane-mark. An example of the right-lane switching 

process is shown in Fig.10, in which the left image 

shows lane fitting result, and the right image shows the 

extracted directional edge-link pairs.

(1) Before switching

(2 ) During switching

(3) Switching complete

Fig. 10. Example of right-lane switching.

4.3 Lane type identification

Lane types can be identified by specific color and 

continuity. In Korea, there are generally three kinds of 

lane-mark colors: white, yellow and blue. These three 

colors are much easier to identify in the YUV color 

space. Therefore, color identification is done in the YUV 

color space. By using adaptive thresholds calculated 

from local histogram, yellow, blue, and white dominant 

regions can be extracted from the U, V and Y channels. 

Scanning candidate lane-mark regions enclosed by 

edge-link pairs on yellow regions first, and then calcu-

lating /yi iR R , yiR  indicates the number of yellow pixels 

inside the candidate lane-mark region, while iR  means 

the total number of pixels inside candidate lane-mark 

region. If this ratio is larger than a threshold value, it is 

assumed that this region contains yellow lane-marks. 

Blue and white colors are checked in the same manner.

In terms of the continuity of lane-mark, it can be 

classified as solid lane-marks and dashed lane-marks. 

In order to identify the continuity of lane-mark, a 

Bayesian probability model is employed. Given the best 

matching line-template L, two posterior probability 

functions (4) and (5) are involved to estimate the type 

of lane-mark, where SolidP( | )L  and P( | )DashL  are the 

likelihood of solid and dashed lane-marks, while SolidP( )  

and P( )Dash  are the corresponding prior probabilities.

P( | ) P( )P( | Solid)Solid Solid=L L (4)

P( | ) P( )P( | )Dash Dash Dash=L L (5)

Therefore, the given best matching line L can be 

classified as solid or dashed by using the following 

Bayes decision rule:

P( | P( | )

P( | P( | )

)
)

solid solid dash

dash solid dash

≥
∈

<

⎧
⎨
⎩

L L
L

L L
(6)

The prior probability SolidP( )  and P( )Dash  can be esti-

mated using some prior knowledge. For example, by 

using lane-mark colors appear on a specific type of 

road. This is based on the prior knowledge that, in 

Korea, most yellow and blue lane-marks that appear on 

city roads or highways are solid lane-marks, while 

white lane-marks are usually dashed lane-marks on the 

city road. The likelihood is calculated based on the ratio 

between the number of overlapped edge-pixels on the 

fitted line and the real length of the fitted line, as is 

shown in (7), 

P( | ) /t j
t j

Solid E L= ∑ ∑L (7)

5. Experimental Results

The proposed lane detection algorithm has been im-

plemented in visual c++ 6.0. For video clips with 

320×240 image size, the processing time is around 10ms 

per frame on an Intel Core2 1.86GHZ processor. 

To evaluate the performance of the proposed lane de-

tection algorithm, the detection results on a road vid-

eo-clip with very complex environment are presented 

here. The video clip used for testing is very challenging 

since it contains different lane types, all kinds of lane 

variation situations (emerging/terminating/merging/ 

switching/intersecting), complex road surfaces (clutter 

markings, shadows), and significant obstacles (vehicles 

running on the road).

The test results on this video clip are shown in 

Table 2. 3000 frames from this video clip are used for 

testing. Here “Correct Detection” means all lane param-

eters including number of lanes, lane position, color, and 

continuity are correctly detected. If one parameter is not 

correctly detected, then the result is reported in “False 

Detection”. In addition, in cases where non-lane objects 

are detected as lane are also included in “False 

Detection”. On the other hand, if existing lanes are not 

detected, then these cases are reported in “Miss-de-

tection”. Fig.11 lists some examples of the detection 

results. 

Table.2 Test results on video clip
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6. Conclusions

Fig. 11. Examples of detection results.

In this paper, a lane detection method based on 

grid-based morphology and directional edge-link pairs 

is presented. Compared with other lane-detection meth-

ods, the proposed algorithm pays much attention at the 

feature extraction stage to achieve a much higher proc-

essing speed.  Since most of the noise and outliers can 

be removed at feature extraction stage, this helps to 

limit the searching space for the fitting algorithm, so 

that the computation cost for line-template matching 

can be greatly reduced. Meanwhile, in the proposed al-

gorithm, there are no special requirements for any cam-

era parameters or background models. This makes the 

algorithm more adaptive to various road environments. 
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