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Scheme 1. Synthetic route to a new brønsted acid 2

Brønsted acid catalysis is one of the growing fields in modern 
organic synthesis.1 Although several Brønsted acids, such as 
urea/thiourea,2 TADDOL,3 and phosphoric acid,4 have been 
applied to a variety of organic reactions, other Brønsted acid 
scaffolds have been much less explored. Recently, Rawal et al 
have developed a Brønsted acid catalyst based on squaric acid 
moiety and successfully applied it as a catalyst for conjugate 
addition of 1,3-dicarbonyl compounds to nitroolefins.5 More 
recently, we have developed a strong Brønsted acid derived from 
squaric acid by introducing a strong electron withdrawing tri-
fluoromethanesulfonyl (Tf) group and applied it to Mukaiyama 
aldol and Michael reaction of a variety of aldehydes, ketones, 
and α,β-unsaturated ketones.6,7 As a continuing effort to develop 
strong Brønsted acids based on the squaric acid scaffold, it was 
expected that replacement of Tf group with a longer perfluoro-
alkanesulfonyl group would be able to tune the physical pro-
perties, such as solubilities in organic solvents and fluoro-
philicity, without loss of reactivity (Figure 1). Herein, we report 
the development of a new Brønsted acid based on the squaric 
acid scaffold carrying two nonafluorobutanesulfonyl (Nf) groups 
and the preliminary results of its reactivity to various organic 
reactions.

Squaric acid diamide 2 carrying two Nf groups was attempted 
to be synthesized by the same method for the synthesis of bis-
triflyl squaramide 1.6 In the conditions for the synthesis of com-

pound 1, however, only mono-nonaflylated squaramide was 
obtained as a product.8 Thus, we investigated a different syn-
thetic route to compound 2 as shown in Scheme 1. Squaric acid 
diamide was easily prepared from squaric acid diethyl ester 
according to the literature procedure.9 Next, we moved our atten-
tion to the nonaflylation of the resulting diamide. Nonaflyl-
ation of the diamide was carried out with nonaflyl fluoride in 
the presence of triethylamine in a sealed tube10 (IMPORTANT: 
The reaction must be carried out in a sealed tube. Otherwise, the 
yield of the reaction will be quite low due to the low boiling point 
of nonaflyl fluoride). To our delight, the desired product 2 was 
obtained in 57% yield after column chromatography on silica.

With this compound in hand, we employed this newly devel-
oped Brønsted acid 2 in the Mukaiyama aldol reaction11 of 
benzaldehyde 4 with silyl enol ether of acetophenone 3a to com-
pare its reactivity with that of compound 1 (Scheme 2). With 
1 mol % of 1 and 2, aldol product 5 was obtained in 96 and 95% 
yield after deprotection of silyl group, respectively. The reacti-
vity of compound 2 was further tested in the Mukaiyama Mi-
chael reaction of α,β-unsaturated carbonyl compound 6 with 
pentamethyldisilyl (PMDS) enol ether of acetophenone 3b 
(Scheme 3). With PMDS enol ether 3b, both Brønsted acids 1 
and 2 gave almost the same result. These results implied that 
the replacement of Tf group with Nf group may have little 
effect on the reactivities of both acids. However, with TMS enol 
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ether, the two catalysts showed dramatic difference in yields. 
Brønsted acid 2 gave the Michael adduct in 97% yield, whereas 
Brønsted acid 1 afforded the product only in 65% yield. This 
might be because the protons in Brønsted acid 2 might be buried 
inside probably due to steric effect of two longer perfluorobutyl 
chains. These buried protons might retard the protodesilylation 
of 3a, which increased the yield of this reaction.

To further investigate the utility of Brønsted acid 2, we appli-
ed it to intramolecular carbonyl ene reaction of rac-citronellal 8 
(Scheme 4).12,13 Unlike Mukaiyama reaction, this ene reaction 
showed a high dependence on the reaction media. No detect-
able cyclized product was obtained in CH3CN after 24 h, but 
cyclization took place in etherated solvents within 2 h. Among 
the solvents tested, THF gave the best result in terms of yield 
as well as diastereoselectivity. The mixture of two diasteromers 
9a and 9b was obtained in 1:3 ratio with 80% overall yield.14 
The other two possible diastereomers were not detected in the 
crude mixture. However, other etherated solvents, such as ether 
and DME, were inferior to THF in terms of both yield and dia-
stereoselectivity.

In conclusion, we have developed a new strong Brønsted 
acid bearing two nonaflyl groups based on the squaric acid 
scaffold. The Brønsted acid 2 showed the almost same reactivity 
as bistriflyl squaramide 1 in Mukaiyama aldol and Michael 
reactions of benzaldehyde with silyl enol ether. Moreover, the 
utility of Brønsted acid 2 could be expanded to carbonyl ene re-
action of rac-citronellal. Further application of this new Brønsted 
acid to organic reactions and to flow system reactors is currently 
underway in our laboratory.
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