DOI QR코드

DOI QR Code

Parametric Study of SOFC System Efficiency Under Operation Conditions of Butane Reformer

부탄 개질기 운전조건에 따른 SOFC 시스템 효율에 대한 연구

  • Published : 2010.04.01

Abstract

In this study, the efficiency of a solid-oxide fuel cell (SOFC) system with a steam reformer or prereformer was analyzed under various conditions. The main components of the system are the reformer, SOFC, and water boiling heat recovery system. Endothermic and exothermic reactions occur in the reformer and SOFC, respectively. Hence, the thermal management of the SOFC system greatly influences the SOFC system efficiency. First, the efficiencies of SOFC systems with a steam reformer and a prereformer are compared. The system with the prereformer was more efficient than the one with steam reformer due to less heat loss. Second, the system efficiencies under various prereformer operating conditions were analyzed. The system efficiency was a function of the heat requirement of the system. The efficiency increased with an increase in the operating temperature of the prereformer, and the maximum system efficiency was observed at $450^{\circ}C$ for a S/C of 2.0.

본 연구에서는 부탄 개질기 운전조건에 따른 SOFC 시스템 효율을 모델링을 통해 분석하였다. SOFC 시스템은 크게 개질기, SOFC, 폐열 회수 장치로 구성하였다. 탄화수소 개질 반응으로 선택한 수증기 개질 반응은 흡열반응인 데에 반해 SOFC 에서 일어나는 전기화학반응은 발열반응이다. 따라서 시스템의 열관리 방법에 따라 효율이 크게 달라진다. 세부적으로 수증기 개질 반응은 운전 온도에 따라 수증기 개질 반응과 예개질 반응으로 분류되는데, 해석 결과 예개질 반응을 적용한 SOFC 시스템의 경우 더 높은 효율을 나타내었다. 시스템의 효율은 SOFC 온도 유지를 위한 열량과 온수로 회수되는 열량에 따라 달라지는데, 예개질 반응을 적용할 경우, 열관리가 더욱 효율적이어서 높은 효율을 나타내는 것으로 분석되었다.

Keywords

References

  1. Park, J., Lee, S., Lim, S., Bae, J., 2009, “Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane,” Trans. of the KSME (B), Vol. 33, No. 1, pp. 60-68. https://doi.org/10.3795/KSME-B.2009.33.1.60
  2. Lee, S., Bae, J., Lim, S., Park, J., 2008, “Improved Configuration of Supported Nickel Catalysts in a Steam Reformer for Effective Hydrogen Production from Methane,” Journal of Power Sources, Vol. 180, pp.506-515. https://doi.org/10.1016/j.jpowsour.2008.01.081
  3. Christensen, T. S., 1996, “Adiabatic Prereforming of Hydrocarbons – an Important Step in Syngas Production,” Applied Catalysis A: General, Vol. 138, pp.285-309. https://doi.org/10.1016/0926-860X(95)00302-9
  4. Kang, Y., Lim, S., Bae, J., Yoo, Y., Park, J., 2007, “A Study on the Suppression of Carbon Deposition in Solid Oxide Fuel Cells Through Methane Internal Reforming,” Trans. of KSME (B), Vol. 31, No. 5, pp.473-481. https://doi.org/10.3795/KSME-B.2007.31.5.473
  5. Carvalho, L. S., Martins, A. R., Reyes, P., Oportus, M., Albonoz, A., Vicentini, V., Carmo Rangel, M., 2009, “Preparation and Characterization of Ru/ MgOAl2O3 Catalysts for Methane Steam Reforming,” Catalysis Today, Vol.142, pp.52-60. https://doi.org/10.1016/j.cattod.2009.01.010
  6. Suzuki, T., Iwanami, H. I., Iwamoto, O., Kitahara, T., 2001, “Pre-Reforming of Liquefied Petroleum Gas on Supported Ruthenium Catalyst,” International Journal of Hydrogen Energy, Vol . 26, pp.935-940. https://doi.org/10.1016/S0360-3199(01)00036-2
  7. Baek, S., Yoon, S., Bae, J., 2007, "System Simulation of Solid Oxide Fuel Cell System with Diesel Fuel Processor Using Aspen HYSYS” KSME 2007 Fall Annual Meeting, Th11E054.
  8. Calise, F., Palombo, A., Vanoli, L., 2006, "Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Power Plant,” Journal of Power Sources, Vol. 158, pp. 225-244. https://doi.org/10.1016/j.jpowsour.2005.07.088
  9. Colpan, C. O., Dincer, I., Hamdullahpur, F., 2007, “Thermodynamic Modeling of Direct Internal Reforming Solid Oxide Fuel Cell Operating with Syngas,” International Journal of Hydrogen Energy, Vol. 32, pp. 787-795. https://doi.org/10.1016/j.ijhydene.2006.10.059
  10. Costamagna, P., Selimovic, A., Borghi, M., Agnew, G., 2004, “Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell [IP-SOFC],” Chemical Engineering Journal, Vol. 102, pp. 61-69. https://doi.org/10.1016/j.cej.2004.02.005
  11. Hussain, M. M., Li, X., Dincer, I., 2006, “Mathematical Modeling of Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 161, pp. 1012-1022. https://doi.org/10.1016/j.jpowsour.2006.05.055
  12. Eguchi, K., Kunisa, Y., Adachi, K., Arai, H., 1996, “Effect of Anodic Concentration Overvoltage on Power Generation Characteristics of Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 143, pp.3699-3703. https://doi.org/10.1149/1.1837274