

Journal of Information Processing Systems, Vol.6, No.1, March 2010 DOI : 10.3745/JIPS.2010.6.1.021

21

A Hybrid Approach for Regression Testing
in Interprocedural Program

Yogesh Singh*, Arvinder Kaur* and Bharti Suri*

Abstract—Software maintenance is one of the major activities of the software development
life cycle. Due to the time and cost constraint it is not possible to perform exhaustive
regression testing. Thus, there is a need for a technique that selects and prioritizes the
effective and important test cases so that the testing effort is reduced. In an analogous
study we have proposed a new variable based algorithm that works on variables using
the hybrid technique. However, in the real world the programs consist of multiple modules.
Hence, in this work we propose a regression testing algorithm that works on
interprocedural programs. In order to validate and analyze this technique we have used
various programs. The result shows that the performance and accuracy of this technique
is very high.

Keywords—Regression Testing, Test Prioritization, Test Selection, Interprocedural

1. INTRODUCTION

Software maintenance is defined as activities performed on a software product subsequent to
its release for use. These activities manage the changes that are often indispensable during this
phase of the software life cycle. It is important to retest in order to verify that these modifica-
tions or changes do not have unintended effects and, therefore, the system still complies with its
specified requirements [1]. It is not possible to execute all the test cases due to time and resource
constraints. The selective retesting of the system or component is called regression testing. Re-
gression testing establishes the confidence in the modified program. It may account for as much
as half of the cost of software maintenance [2]. The importance of regression testing can be un-
derstood from the fact that the single most costly bug in software history could have been re-
vealed by regression testing [3, 4].

Regression testing techniques are categorized as: regression test selection techniques, regres-
sion test prioritization techniques, and hybrid techniques. The regression test selection technique
chooses the tests from the old test suite to execute on the modified version of the software. Re-
gression test prioritization techniques reorder test suite with a goal to increase the effectiveness
of testing in terms of achieving code coverage earlier, checking frequently used features of soft-
ware, and early fault detection. Hybrid techniques combine both selection and prioritization for
regression testing.

Various techniques mentioned in literature are based on test selection criteria. Some criteria

Manuscript received December 16, 2009; revised March 2, 2010; accepted March 10, 2010.
Corresponding Author: Bharti Suri
* University School of Information Technology, GGS Indraprastha University, Delhi (ys66@gmail.com, arvinderkaur-

takkar@yahoo.com, bhartisuri@gmail.com)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

A Hybrid Approach for Regression Testing in Interprocedural Program

22

select test cases exercising functions in programs that have been changed or deleted in produc-
ing changed programs [5]; some seek a subset of test suites that is minimal in covering all func-
tions of the program identified as changed as explained by Fischer, Raji, and Chruscicki [6] and
Gupta, Harrold, and Soffa [7]; and some have been proposed in [8-12]. One of the techniques,
proposed by Rothermel [8] and called the safe test selection technique, involves the construction
of a control flow graph for different versions of the program and uses these graphs to make the
test selection. The selection is carried out with an intention to execute the changed code. Elbaum,
Malishevsky, and Rothermel [13] and Elbaum et al. [14] proposed 18 different test case prioriti-
zation techniques that are classified into statement-level and function-level techniques. Rother-
mel et al. [15] have presented many techniques for prioritizing test cases based on the coverage
of statements or branches in the program. A prioritization technique based on historical execu-
tion data has also been presented [16]. The technique developed using modified condi-
tion/decision coverage for test suite prioritization is presented in [17]. Requirements based pri-
oritization, which incorporates knowledge about requirements, complexity, and volatility, is
proposed in [18]. Another prioritization technique, which takes into account the output influenc-
ing and branches executed by test cases, is proposed in [19]. The information about system
model and its behavior is used to prioritize test suite in model-based test prioritization method in
[20]. Krishnamurthy et. al. developed and validated requirement based prioritization scheme to
reveal more severe faults at earlier phase of software development[21].

The hybrid approach combines both regression test selection and test case prioritization. A
number of techniques and approaches have evolved in the past based on the following concepts:
1) the test selection algorithm proposed by Aggarwal, Singh, and Kaur [22]; 2) the hybrid tech-
nique proposed by Wong et al. [23], which combines minimization, modification, and prioritiza-
tion based selection using test history; 3) the hybrid technique proposed by Gupta et al. [24]
based on regression test selection using slicing and prioritizing the selected definition-use asso-
ciations; and 4) the variable based hybrid approach by Singh et al. [25].

The remainder of the paper is organized as follows: Section 2 will give brief introduction of
our proposed basic method and the terminology used. In Section 3, we present experimental
setup and data collection. Section 4 explains the steps followed in the study, the results of which
are presented in Section 5. In Section 6 application of the technique is given. Section 7 describes
threats to validity for the proposed technique. Finally, conclusions are mentioned in Section 8.

2. BASIC METHOD AND TERMINOLOGY
The proposed hybrid approach is based on the selection and prioritization of the test cases for

interprocedural programs. It is a version-specific technique that takes into account the variable
usage in the old as well as the modified program, named as Pe and Pe’ respectively. The tech-
nique requires that the test cases in the original test suite Te not only contain test case identifica-
tion, expected input and expected output (as per past practice) but also the variable(s) that is
(are) being checked by this test case and the module to which the variable belongs. It selects all
those variables that are in the changed statements and then selects only those test cases that ei-
ther correspond to these variables or to the variables computed from them recursively. Multiple-
level prioritization of the selected test cases is performed on the basis of variable usage. Vari-
ables are a vital source of changes in the program and this approach captures the effect of

Yogesh Singh, Arvinder Kaur and Bharti Suri

23

change in terms of variable computation. The approach takes into account the changes in the
variables and its ripple effect. Appendix 1 defines some related terminology.

A computed variable table (CVTe) is prepared (maintained through development testing) in
which the list of variables computed from other variables is maintained. An array with the in-
formation of the number of times the variable is used in computation is also maintained during
development testing in VDCe (Variable Dependency Count).

The algorithm is presented in Appendix 2 which demonstrates the technique. Initially, the re-
sultant test suite is set to null. In step 2 of algorithm, a list of variables “Ve” is created from
changed (inserted/modified/deleted) lines using array CLB which maintain changed line num-
bers. If any variable is deleted permanently from the program by modification or deletion of any
line, it results in modified versions of Ve, VDCe, and CVTe (by deleting the row corresponding
to those variables). The selection step and priority1 assignment step (step 3) selects all those test
cases that correspond to variables contained in modified Ve. These test cases are assigned Prior-
ity1 as 1 (step 3(i), (ii)). Step 3(iv) of the algorithm gets the variable computed from variables
found above from modified CVT and sets Priority1 of corresponding test case as 2 onwards. If
the same test case already exists then Priority1 is kept as the minimum of the two.

After assigning Priority1, Priority2 are assigned, as stated in step 4 of the algorithm. The pur-
pose of assigning Priority2 is to further prioritize the test cases that have the same value as Pri-
ority1. Priority2 is based on the dependency count as in the modified VDCe. The variables
which have highest dependency count are selected. The test cases corresponding to these se-
lected variables are assigned Priority2 as 1. Then, the variables having next highest dependency
count are selected. The test cases corresponding to them are assigned priority2 as 2 and so on.
Step 4(i) to Step 4(iii) chooses all the test cases with same Priority1 and Step 4(v) further priori-
tize according to the dependency count.

The resultant test suite T’ has test cases having Priority1 and Priority2 assigned.

3. EXPERIMENTAL SETUP AND DATA COLLECTION
To carry out the study, five programs written in C language were selected. The programs for

the experiment include problems such as calendar, triangle, time-date, Kmap generation and tax
calculation. The test suites were prepared for each of them. A group of four students from the
Masters of Information Technology course at Guru Gobind Singh Indraprastha University was
formed under the supervision of two Asstistant Professors. The students had prior knowledge of
software testing. The test cases were prepared by the students and verified by the Assistant Pro-
fessors. A prerequisite to this work is to have lines of source code numbered so as to perform the
gray box analysis, which is the basis of our testing technique. Gray box testing is a combination
of black box and white box testing approaches. Gray box testing includes testing from the out-
side of the product, as is done in the black box, but the test cases are designed incorporating the
information about the code or the program operation [26]. The test suites in this approach are
based on the gray box technique, as the input/output follows the black box strategy and at the
same time keeping variable usage information, which is basically a white box approach.

The interprocedural technique proposed in the pioneering work of Rothermel [8] was referred
to for comparison. The factors accounted for choosing this technique are the availability of the
detailed explanation of all aspects of their work and the efficiency of using the control flow

A Hybrid Approach for Regression Testing in Interprocedural Program

24

graph (CFG) with the test case trace for test selection.
The overall experiment was carried out corresponding to each of the intermodule techniques.

The experimental data was gathered for two techniques and, analysis was carried out on the col-
lected data. The results are presented in a later section.

4. STEPS FOLLOWED IN THE STUDY
The following steps were followed in this study:

(1) There are two versions of each program: the old and the modified, and the original test

suite Te, CVTe, VDCe, CLBe, and Ve (described in Appendix 1).
(2) We then updated/modified Ve, VDCe, and CVTe depending upon the changes made in the

older version. Then we applied the proposed technique, and the result was the reduced
test suite Te’ with priorities assigned. These steps were repeated for all the programs cho-
sen for this study. With the resultant test suites, the objective was to measure the effec-
tiveness of the technique in terms of statement coverage, branch coverage and average
rate of fault detection.

(3) Control Flow Graphs were constructed for all the programs. A CFG for a program is a di-
rected graph with vertices and edges where vertices are the statements and edges repre-
sent flow of control. Statement and Branch coverage metric was analyzed using CFG.
Statement coverage measures the number of statements traced by a particular test case. A
branch is an edge in a CFG from a decision node. A test case covers a branch of a pro-
gram if the flow of control passes through it [26].

(4) The third coverage criterion is related to the Average Percentage of Faults Detected
(APFD)[12, 14, 27]. We created faulty versions of the programs and then analyzed the ef-
fectiveness of Te’ in exercising the contained faults. For creating the faulty versions of the
programs, simple errors in the operator/operand were manually seeded on the model of
the competent programmer hypothesis and coupling effect [28, 29]. The competent pro-
grammer hypothesis states that competent programmers tend to write programs that are
close to being correct, that is, a program written by a competent programmer may be in-
correct by relatively simple faults in comparison to a correct program. The coupling effect
states that a test data set that detects all simple faults in a program will also detect more
complex faults. The faults severity and test case cost are assumed to be uniform. [15, 30]
incorporates varying test case and fault cost. The results presented here may be different
if the varying cost is considered.

Rothermel’s technique [8] was applied to the same programs and all the results were com-

puted.

5. RESULTS AND DISCUSSIONS
Table 1 summarizes the “min,” “max,” “mean,” and “standard deviation” of parameters com-

puted from both the techniques. The values prefixed by “R” are computed by Rothermel’s tech-
nique and the others are computed by the suggested technique. The mean value of the tests se-

Yogesh Singh, Arvinder Kaur and Bharti Suri

25

lected by the proposed technique is 71.40 and by the compared technique 98.36. However, the
mean of statement coverage achieved by our technique is 61.06 and with the compared tech-
nique is 65.13.This shows that our technique selects few test cases with comparable statement
coverage. The branch coverage, modified coverage and percentage of test cases selected for
modified coverage are almost the same.

Table 2 shows the summarized results for the two techniques. Fig. 1 to Fig. 5 represents re-
sults shown in this table.

Figure 1 compares statement coverage for the two techniques. Figure 2 gives the comparison
in terms of branch coverage results. The graph shows comparable results from the two tech-
niques for statement and branch coverage. Figure 3 shows modified statement coverage. It
shows that both the techniques cover 94-100% of the modified statements. The percentage of
test cases selected after implementing the techniques is shown in Figure 4. The selected test
cases using our technique are less than those selected with the compared technique. Figure 5

Table 1. Descriptive statistics of computed measures from the two techniques

 Min Max Mean Std
Deviation Variance

Rothermal Technique % of statement covered 35.35 85.50 65.13 24.09 580.38
Hybrid Technique % of statement covered 33 83.35 61.06 22.67 514.08
Rothermal Technique % of branches covered 29 79.16 56.49 22.43 503.22
Hybrid Technique % of branches covered 27.33 79.14 56.17 23.09 533.30
Rothermal Technique % of modified statements covered 94.44 100 98.88 2.48 6.18
Hybrid Technique % of modified statements covered 94.44 100 98.88 2.48 6.18
Rothermal Technique % of test case selected 95.34 100 98.36 2.27 5.17
Hybrid Technique % of test case selected 49.41 92.98 71.40 16.85 284.01
Rothermal Technique % of prioritized test cases for modi-
fied coverage 1.17 38.59 14.77 16.02 256.70
Hybrid Technique % of prioritized test cases for modified
coverage 1.1700 38.59 17.56 15.00 225.02

Table 2. Results of the compared techniques

 CalenderTime- DateTriangle Kmap Tax for Employee
Rothermal Technique % of statement covered 78.75% 35.35% 42.71% 85.50% 83.34%
Hybrid Technique % of statement covered 80.30% 33.00% 41.85% 66.80% 83.35%
Rothermal Technique % of branches covered 56.83% 29.00% 39.59% 77.88% 79.16%
Hybrid Technique % of branches covered 57.82% 27.33% 38.78% 77.82% 79.14%
Rothermal Technique % of modified statements
covered 94.44% 100% 100% 100% 100%

Hybrid Technique % of modified statements cov-
ered 94.44% 100% 100% 100.00% 100.00%

Rothermal Technique % of test case selected 100% 95.34% 96.49% 100% 100%
Hybrid Technique % of test case selected 49.41% 60.46% 92.98% 78.18% 76.00%
Rothermal Technique % of prioritized test cases
for modified coverage 1.17% 4.65% 38.59% 5.45% 24.00%

Hybrid Technique % of prioritized test cases for
modified coverage 1.17% 18.60% 38.59% 5.45% 24.00%

A Hybrid Approach for Regression Testing in Interprocedural Program

26

displays the percentage of test cases needed for the modified coverage achieved. It is clear from
Fig. 1 to Fig. 5 that though the number of test cases selected from our approach is less than the
compared technique, the coverage achieved with respect to statement, branch and modified
statements is equivalent. Very few test cases are required to cover the modified portion of the
programs. The coverage criterion does not mean that the technique is better. But it depends on
whether it selects those test cases that have the potential to catch the faults. We are selecting
those test cases that check faults corresponding to the variables used in the changed lines or va-
riables computed from them. These test cases have a high potential of catching faults as either
they check those variables that are in the modified lines or are computed from them. The only
way a fault can travel from one part to another part of the program is through the variables. Also,
those variables that have a high dependency count are given higher priority so as to check faults
corresponding to those variables and hence the most affected part of the program. Figure 6 gives

Fig. 1. Statement Coverage for the Fig. 2. Branch Coverage for the Compared
Compared Techniques Technique

Fig. 3. Percentage of Modified Statement Fig. 4. Percentage of Test Case Selected
Coverage

Fig. 5. Percentage of Test Cases for Modified Coverage

Yogesh Singh, Arvinder Kaur and Bharti Suri

27

(a) Original and Resultant APFD Graphs for program “Calendar”

(b) Original and Resultant APFD Graphs for program “Date-Time”

(c) Original and Resultant APFD Graphs for program “K Map”

(d) Original and Resultant APFD Graphs for program “Triangle”

Fig. 6. APFD Graphs for Original and Resultant Test Suites for respective programs

A Hybrid Approach for Regression Testing in Interprocedural Program

28

APFD graphs for the original and resultant test suite for the programs. It shows the effectiveness
of the technique in terms of the percentage of faults detected in the least possible time.

6. APPLICATION OF TECHNIQUE
Software practitioners may use the technique developed to reduce the time and effort required

for regression testing. This technique may lead to greater savings when applied to large and
complex programs as compared to small and simple programs. The application of this work may
improve the quality, reliability, and effectiveness of the code, which may, in turn, increase the
level of customer satisfaction.

7. THREATS TO VALIDITY
On carefully analyzing the behavior of the two techniques, we observed that the proposed

technique gives better results for the programs containing intensive variable computations. Fur-
ther, the technique does not build the new test cases required for the code added due to modifi-
cation. Moreover, the types of decision statements may affect the percentage of coverage
achieved. Coverage depends on the type of decision statements: Some decisions are taken after
the execution such as in “do…while,” and “for,” and some before execution such as “while.”
There are other options available in the programming language such as “switch statement,”
“multiple condition decision statement,” “if…else,” and so on, which give different coverage for
the same test case.

8. CONCLUSIONS
In this paper, we have proposed and validated a technique, which is an extension of an exist-

ing technique proposed by us in an analogous study. The technique proposed in this work is
compared with a technique given in literature by Rothermal et. al.[8]. The main results of this
work are:
• Numbers of test cases selected are less for the proposed technique than the compared one.
• The technique selected less number of test cases as compared to other technique.
• The rate of fault detection using the technique is higher for the resultant test suite

(e) Original and Resultant APFD Graphs for program “Tax for Employee”

Fig. 6. Continued

Yogesh Singh, Arvinder Kaur and Bharti Suri

29

REFERENCE
[1] K.K. Aggarwal, Y. Singh, Software engineering programs documentation, operating procedures, third

edition, New Age International Publishers, New Delhi, 2008.
[2] B.Beizer, Software testing techniques, Van Nostround Reinhold, New York, 1990.
[3] R. V. Binder, Testing object- oriented systems Reading, Mass.: Addison Wesley, 2000.
[4] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, S. Kanduri, Understanding the effects of

changes on the cost-effectiveness of regression testing techniques. Journal of Software Testing, Veri-
fication, and Reliability 13(2) (June 2003) 65-83.

[5] Y.Chen, D. Rosenblum, K. Vo., Test tube: A system for selective regression testing, in: Proceedings
of the 16th International Conference on Software Engineering, Los Alamitos, Calif., 1994, pp.211-220.

[6] K. Fischer, F. Raji, A. Chrusciki, A methodology for retesting modified software, in: Proceedings of
the National Telecommunications Conference B-6-3 (November 1981) 1-6.

[7] R. Gupta, M. J. Harrold, M. Soffa, An approach to regression testing using slicing, in: Proceedings of
the Conference on Software Maintenance, 1992, pp. 299-308.

[8] G. Rothermel, Efficient effective regression testing using safe test selection techniques, PhD thesis,
Clemson University, 1996.

[9] J.Bible, G. Rothermel, D. Rosenblum, Coarse- and fine-grained safe regression test selection. ACM
Transactions on Software Engineering and Methodology 10 (2), (2001) 149-183.

[10] T. Graves, M. J. Harrold, J. M. Kim, A. Porter, G. Rothermel, An empirical study of regression test
selection techniques, in: Proceedings of the 20th International Conference on Software Engineering,
IEEE Computer Society Press, Kyoto, Japan, 1998, pp.188-197.

[11] G. Rothermel, M. J. Harrold, Empirical studies of a safe regression test selection technique, IEEE
Transactions on Software Engineering 24(6) (1998) 401-419.

[12] G. Rothermel, M. J. Harrold, J. Dedhia, Regression test selection for C++ programs, Software Testing,
Verification and Reliability 10(2) (2000) 77-109.

[13] S. Elbaum, A. G. Malishevsky, G. Rothermel, Test case prioritization: A family of empirical studies,
IEEE Transactions on Software Engineering 28(2), (February 2002), pp.159-182.

[14] S. Elbaum, G. Rothermel, S. Kanduri, A. G. Malishevsky, Selecting a cost-effective test case prioriti-
zation technique. Software Quality Journal 12(3) (2004) , pp.185-210.

[15] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Prioritizing test cases for regression testing, IEEE
Transactions on Software Engineering 27(10) (October 2001) 929-948.

[16] J. M. Kim, A. Porter, A history-based test prioritization technique for regression testing in resource
constrained environments, in: Proceedings of the 24th International Conference on Software Engi-
neering, Orlando, Fla., (2002) 119-129.

[17] J. A. Jones, M. J. Harrold, Test-suite reduction and prioritization for modified condition/decision coverage,
in: Proceedings of the International Conference on Software Maintenance, Florence, Italy, (2001) 92-101.

[18] H. Srikanth, Requirements-based test case prioritization, Student Research Forum in 12th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering, Newport Beach,
Calif, 2004.

[19] D.Jeffrey, N. Gupta, Test case prioritization using relevant slices, in: Proceedings of Computer Soft-
ware and Applications (COMPSAC'06), Chicago, (2006) 411-420.

[20] B. Korel, G. Koutsogiannakis, L.H. Tahat, Model –based test prioritization heuristic methods and
their evaluation, in: the proceedings of the 3rd International Workshop on Advances in Model-based
Testing, London, UK, (2007) 34-43.

[21] R. Krishnamoorthi, S.A. Sahaaya, Factor oriented requirement coverage based system test case priori-
tization of new and regression test cases, Information and Software Technology 51, (2009) 799-808.

[22] K.K. Aggarwal, Y. Singh, A. Kaur, Code coverage based technique for prioritizing test cases for
regression testing, ACM SIGSOFT Software Engineering Notes 29 (5) (September 2004).

[23] W. E. Wong, J. R. Horgan, S. London, H. Agrawal, A study of effective regression testing in practice,
in: Proceedings of the 8th IEEE International Symposium on Software Reliability Engineering,
(1997) 264-274.

[24] R. Gupta, M. L. Soffa, Priority based data flow testing, IEEE ICSM, 1995, pp.348-357.
[25] Y. Singh, A. Kaur, B. Suri, Regression Test Selection and Prioritization Using Variables - Analysis

and Experimentation. Software Quality Professional, Vol.11, No.2, (March, 2009), pp.38-51.
[26] C. Kaner , J. Bach, and B. Pettichord, Lessons learned in software testing, John Wiley and Sons, New

York, 2002.
[26] Hierons, R.M., M. Harman, C.J. Fox, Branch coverage testability transformation for unstructured

A Hybrid Approach for Regression Testing in Interprocedural Program

30

programs, The Computer Journal, Oxford university press, 48(4), (2005) 421-436.
[27] Gregg Rothermel, Roland H. Untch, Chengyun Chu, Mary Jean Harrold, Test Case Prioritization: An

Empirical Study, in: Proceedings of the International Conference on Software Maintenance, Oxford,
UK, (September, 1999) 179-188.

[28] R. A. DeMillo, R. J. Lipton, and G. Sayward, Hints on test data selection: Help for the practicing
programmer. Computer 11(4) , (1978) 34-41.

[29] A.F. Offutt, Investigations of the software testing coupling effect, ACM Transactions on software
engineering and methodology 1(1) (January, 1992) 5-20.

[30] A.G. Malishevsky, J.R. Ruthru, G. Rothermel S.Elbaum, Cost-cognizant Test Case Prioritization,
Technical Report TR-UNL-CSE-2006-0004, Department of Computer Science and Engineering, Uni-
versity of Nebraska, Lincoln, Nebraska, U.S.A., March, 2006.

Yogesh Singh
He is a professor with the University School of Information Technology (USIT),
Guru Gobind Singh Indraprastha University, India. He is also Controller of Ex-
aminations with the Guru Gobind Singh Indraprastha University, India. He was
founder Head and dean of the University School of Information Technology,
Guru Gobind Singh Indraprastha University. He received his master’s degree
and doctorate from the National Institute of Technology, Kurukshetra. His re-
search interests include software engineering focusing on planning, testing, met-

rics, and neural networks. He is co-author of a book on software engineering, and is a Fellow of IETE
and member of IEEE. He has more than 200 publications in international and national journals and
conferences.

Arvinder Kaur
She is an Associate Professor with the University School of Information Technol-
ogy, Guru Gobind Singh Indraprastha University, India. She obtained her doctor-
ate from Guru Gobind Singh Indraprastha University and her master’s degree in
computer science from Thapar Institute of Enggineering and Technology. Prior to
joining the school, she worked with B.R. Ambedkar Regional Engineering Col-
lege, Jalandhar and Thapar Institute of Enggineering and Technology. She is a
recipient of the Career Award for Young Teachers from the All India Council of

Technical Education, India. Her research interests include software engineering, object-oriented soft-
ware engineering, software metrics, software quality, software project management, and software test-
ing. She also is a lifetime member of ISTE and CSI. Kaur has published 40 research papers in national
and international journals and conferences.

Bharti Suri
She is an Assistant Professor at the University School of Information Technology,
Guru Gobind Singh Indraprastha University, Kashmere Gate, India. She holds
masters degrees in computer science) and information technology. Her areas of
interest are software engineering, software testing, software project management,
software quality, and software metrics. Suri is a lifetime member of CSI. She was
co-investigator of University Grants Commission (UGC) sponsored Major Re-
search Project (MRP) in the area of software testing. She has many publications

in national and international journals and conferences to her credit.

Yogesh Singh, Arvinder Kaur and Bharti Suri

31

APPENDIX 1:
Related Terminology

Pe - Original program (before modification)
Pe

’ - New program (after modification)
Te - Original test suite having six columns as testcaseID, variable name, function name,

input and output
Te° - Temporary set of test cases
Te’ - Resultant test suite having both priority1 and priority2 assigned
Se, Se’, Xe - The intermediate sets with entries like (v,f) where v is variable name and f is

function name, computed at different steps of algorithm
Ve - A set consisting of variables from the changed lines with their function name
CVTe - A two dimensional array with the elements of type (v,f) in first column where

‘v’ is variable name and ‘f’ is the function name. The second column is the list
of variables computed from v.

CLBe - A three dimensional array with the following fields: Changed line number, func-
tion name of older version and a bit. The bit is 0 if the line is an inserted line
and the bit is 1 if the line is deleted or modified.

VDCe - Variable dependency count is a two dimensional array with the first column
consisting of the element (v,f) and the second column is the dependency count
(count of the number of times it is used as an operand).

Priority - If the priority values for two different test cases are i and j, respectively, and i<j,
then the test case with priority i will be executed earlier than the test case with
priority j (i and j are positive integers). Thus, priority i is higher than priority j.

Priority1 - The priority assigned to test cases corresponding to the variable in the CVTe.
Priority2 - The priority assigned to test cases (within Priority1) on the basis of VDCe.

A Hybrid Approach for Regression Testing in Interprocedural Program

32

APPENDIX 2:
Algorithm (Interprocedural)

1. Te’= φ
//Create Ve; update VDCe, CVTe

2. For i = 1 to r // r is number of entries in CLB
i) For all variables v in line CLB (i, 1)

Ve = Ve U {v, CLBe (i,2)}
ii) If CLBe (i,3) = 1

Then
If some variables are deleted that are not used anywhere in new version

 Then
Delete the row from test case table corresponding to this variable and change array Ve, VDCe and CVTe
accordingly
Endif

 Else
 Insert corresponding rows in Ve,VDCe and CVTe End If

End for
// Test case selection and priority1 assignment
3. For l = 1 to total number of entries inVe:

i) i =1
ii) For j = 1 to t // t is number of entries in Te

//here we find test case corresponding to each entry (v,f) € Ve, where v correspond to variable name and f to
function name

If Te (j,2) == Ve (l,1) && Te (j,3) == Ve (l,2)
Then

 Te’ = Te’ U test case corresponding to entry j
 Te’(j,6) = 1 //priority1 assignment

End if
End for

iii) Se={(v , function name of v)}
iv) Repeat while flag = false

// this loop gets the variables computed from variables in Si and assign priority1 from 2 onwards
begin

a) From CVTe find elements that are computed using variables in S.
b) If no such entry is found

 Then
 Set flag = true

 Else
 Set Se = Se U {all new elements found}
 i = i +1
 For each variable (w, f) € Se

Select test cases T° corresponding to element (w, f) and assign priority1 to i.
m = number of test cases in Te°
For n = 1 to m

If Te°(n) € Te’
then

 Set Te’(n,6) = min (i,Te’(n,6))
Else

Te’= Te’ U Te°(n).
 End if
 End for
 End for
 End if
 End
 End for

// Priority2 assignment
4. For k = 1 to max (priority1) //k is for priority1

i) Se’= φ
ii) For i=1 to t’ // t’ = number of test cases in T’
iii) If Te’(i, 6) = k

Then
Se’ = Se’ U {(Te’(i,2), Te’(i,3))} //S’ contain entries such that the
 corresponding test case has priority1=k

End if
End for

iv) j =1, Xe=φ // j is for assigning priority2

v) Repeat while Se’≠ φ
begin

a) Select the elements belonging to S ′ having maximum dependency count (from VDC) and insert inXe.
b) For i=1 to t’

If (Te’(i,2), Te’(i,3)) € Xe
Then

Te’(i,7) = j
End if

 End for
 //Remove those entries from S’ for which priority2 has been assigned

 c) Se’= Se’- X , j = j + 1
 end

vi) k = k +1
End for

5. Exit

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

