Laparotomy versus Laparoscopic Placement of Distal Catheter in Ventriculoperitoneal Shunt Procedure

Young Seop Park, M.D., In Sung Park, M.D., Kyung Bum Park, M.D., Chul Hee Lee, M.D., Soo Hyun Hwang, M.D., Jong Woo Han, M.D.
Department of Neurosurgery, Gyeongsang National University School of Medicine, Jinju, Korea

Objective: Traditionally, peritoneal catheter is inserted with midline laparotomy incision in ventriculoperitoneal (V-P) shunt procedures. Complications of V-P shunt is not uncommon and have been reported to occur in 5-37% of cases. The aim of this study is to compare the clinical outcomes and the operation time between laparotomy and laparoscopic groups.

Methods: A total of 155 V-P shunt procedures were performed to treat hydrocephalic patients of various origins in our institute between June 2006 to January 2010, 95 of which were laparoscopically guided and 60 were not. We reviewed the operation time, surgery-related complications, and intraoperative and postoperative problems.

Results: In the laparoscopic group, the mean duration of the procedure (52 minutes) was significantly shorter ($p<0.001$) than the laparotomy group (109 minutes). There were two cases of malfunctions and one incidence of diaphragm injury in the laparotomy group. In contrast, there were neither malfunction nor any internal organ injuries in the laparoscopy group ($p=0.024$). There were total of two cases of infections from both groups ($p=0.71$).

Conclusion: Laparoscopically guided insertions of distal shunt catheter is considered a fast and safe method in contrast to the laparotomy technique. This method allows the exact localization of the peritoneal catheter and a confirmation of its patency.

KEY WORDS: Hydrocephalus · Laparoscopy · Peritoneal catheter.

INTRODUCTION

A number of techniques have been described for the treatment of hydrocephalus. Ventriculoperitoneal (V-P) shunt is the preferred procedure for treating hydrocephalus of various etiologies in children and adults.

Laparoscopy-assisted distal shunt catheter placement was first described in 19939. Traditionally, the peritoneal portion involves a small midline incision.

Complications from the traditional V-P shunt placement is not uncommon and have been reported to occur in 5-37% of the cases1,16,24,31,32.

Laparoscopy-assisted techniques have greatly reduced these potential morbidities through direct visualization of the peritoneal cavity, as well as the risk of incisional hernia after laparotomy5,9,16,20,26,27,30. This study focuses on the following results of laparoscopically guided implantation of a distal catheter compared to the laparotomy group: the operation time, intra-operative and extra-operative problems.

MATERIALS AND METHODS

Patient population

A total of 155 V-P shunt procedures were performed for the treatment of hydrocephalus of various origins between June 2006 to January 2010, 95 consecutive patients of which were laparoscopically guided, whereas 60 patients were not (Table 1). The operations for each group were performed by two neurosurgeons at a single institute. The data of the patients were retrospectively collected from their medical records and follow-up notes in order to assess the operation time, intra-operative and post-operative problems.

Technical aspects

Laparotomy shunt procedures were performed by a neurosurgical resident and a senior neurosurgeon. Laparoscopy-

Table 1. Indications for V-P shunt procedure

<table>
<thead>
<tr>
<th>Indication</th>
<th>No. of patients (%)</th>
<th>Laparotomy (n = 65)</th>
<th>Laparoscopy (n = 95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aneurysmal SAH</td>
<td>38 (58.46%)</td>
<td>62 (65.26%)</td>
<td></td>
</tr>
<tr>
<td>Normal pressure hydrocephalus</td>
<td>12 (18.46%)</td>
<td>13 (13.68%)</td>
<td></td>
</tr>
<tr>
<td>Intraventricular hemorrhage</td>
<td>9 (13.85%)</td>
<td>11 (11.58%)</td>
<td></td>
</tr>
<tr>
<td>Posttraumatic hydrocephalus</td>
<td>3 (4.62%)</td>
<td>5 (5.26%)</td>
<td></td>
</tr>
<tr>
<td>Tumor-related hydrocephalus</td>
<td>1 (1.54%)</td>
<td>1 (1.05%)</td>
<td></td>
</tr>
<tr>
<td>Shunt malfunction</td>
<td>1 (1.54%)</td>
<td>2 (2.10%)</td>
<td></td>
</tr>
<tr>
<td>Post infection</td>
<td>1 (1.54%)</td>
<td>1 (1.05%)</td>
<td></td>
</tr>
</tbody>
</table>

Procedure description

A curve-linear paraumbilical 10 mm incision was made. The peritoneum was punctured directly with a Veress needle. Through the needle, pneumoperitoneum was created up to 10 mm Hg with carbon dioxide gas. After removing the Veress needle, a five millimeter trocar was inserted and a 30-degree five millimeter laparoscope was introduced into the peritoneal cavity (Fig. 1, 2A). The intra-peritoneal cavity was inspected and a site along the subcostal region was chosen for intra-abdominal catheter insertion. A five millimeter vertical skin incision was made and under the direct vision the peritoneum was punctured with vertebroplasty needle (Fig. 1C, 2B, C). Peritoneal catheter was inserted via the vertebroplasty needle and guided toward the left lower abdominal portion under videooscopic inspection (Fig. 2D, E). After catheter was introduced through the needle into the peritoneal cavity about 20 cm, vertebroplasty needle was carefully removed (Fig. 2F). After drawing out the needle, the peritoneum was deflated.

After traversing a malleable tunneler (65 cm long) from the subcostal incision through the subcutaneous tissue to the retroauricular area, the cranial part of catheter was placed at retroauricular area. The pressure of cerebrospinal fluid (CSF) was examined after the deflating the peritoneum in order to avoid the deleterious effects of increased abdominal pressure on the intracranial pressure.4,22,25.

After connecting the valve with peritoneal and ventricular catheter, pneumoperitoneum was recreated. The flow of CSF was confirmed under the laparoscopic observation (Fig. 3). Following the desufflation, the trochar was removed. Neither incision required fascial closure while two small incisions were closed absorbable intracutaneous stitches.

RESULTS

In the laparoscopy group (52 minutes), the mean proce-
dure duration, defined as the time from initial incision to final dressing placement, was significantly shorter ($p < 0.001$, Student's t-test) than the laparotomy group (109 minutes) (Table 2).

There were two cases of malfunctions and one incidence of diaphragm injury in the laparotomy group. In contrast, there were neither malfunction nor internal organ injuries in the laparoscopy group. Lower incidence of malfunction and internal organ injuries were shown in the laparoscopy group (0%) compare to the laparotomy group (3.08%) ($p = 0.034$, Student's t-test).

There were total of two cases of infections from both groups, which showed no statistically significant differences ($p = 0.7$, Student's t-test).

Table 2. Comparison of results between laparoscopic and nonlaparoscopic groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Surgical Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laparotomy (n = 65)</td>
</tr>
<tr>
<td>Gender (male : female)</td>
<td>28 : 37</td>
</tr>
<tr>
<td>Mean duration of operation (minutes)</td>
<td>109 (45-175)</td>
</tr>
<tr>
<td>Mean follow-up duration</td>
<td>20 (2-45)</td>
</tr>
<tr>
<td>Complication (no. of cases)</td>
<td>5 (7.69%)</td>
</tr>
<tr>
<td>Infection</td>
<td>2 (3.08%)</td>
</tr>
<tr>
<td>Malfunction</td>
<td>2 (3.08%)</td>
</tr>
<tr>
<td>Organ injury</td>
<td>1 (1.54%)</td>
</tr>
</tbody>
</table>

(Diaphragm)

Table 3. Usage of laparoscopy in patients with positive abdominal surgery

<table>
<thead>
<tr>
<th>Previous abdominal pathology</th>
<th>Intraoperative findings</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt malfunction</td>
<td>No adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Shunt infection</td>
<td>Adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Appendectomy</td>
<td>No adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Appendectomy</td>
<td>Adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Laparoscopic cholecystectomy</td>
<td>Adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Conventional cholecystectomy</td>
<td>Adhesions</td>
<td>Good</td>
</tr>
<tr>
<td>Gastrectomy (EGC)</td>
<td>Adhesions</td>
<td>Good</td>
</tr>
</tbody>
</table>

EGC: early gastric cancer

Fig. 3. Vertical pressure is given to the reservoir to check the patency of CSF flow at the end of V-P shunt procedure.

In all patients, the insertion of the catheter within the abdominal cavity was performed with only one Veress needle and one laparoscope with five millimeter trocar. However, one patient had an additional five millimeter port and dissecting forceps to tract the tube in order to correct the insert difficulty. This problem was corrected by inserting the Veress needle in the abdominal wall with a widened insertion margin. Seven patients with previous abdominal operations and four severely obese patients showed no difficulty in distal catheter insertions (Table 3).

Ochalski et al.\(^{20}\) have introduced a modified percutaneous insertion technique which is a variation of a similar technique initially described by Lockhart et al.\(^{20}\). They have used a percutaneous (Veress needle and Peel-Apart introducer) minimal-access technique as the first-line approach for the distal intraperitoneal catheter insertions. Retrospective analy-
sis of 100 cases of distal catheter minimal-access insertion showed 91 patients had neither distal catheter misplacements nor any internal organ injuries from the insertion of Veress needle or Peel-Apart Percutaneous Introducer. However, procedural changes were made in the remaining 9 cases, where an open mini-laparotomy or laparoscopically assisted insertion were carried out. Also, the total rate of shunt system revision secondary to malfunction was 17%.

Lockhart et al. used the Veress needle to establish peritoneal access which was then replaced with a peel-away sheath using a guide-wire exchange technique. Distal catheter insertion was performed in a similar fashion, however, gas insufflation was not used to establish pneumoperitoneum.

At the beginning of the study, we used peel-off needles that were introduced in other reports. However, there were cases of catheter breakage provoked by the split edges on the needle. Instead, vertebroplasty needles were used and such problems were resolved with much success. It is postulated that the reason for the shortening of the procedure duration is due to shortened catheter insertion time and the assurance of a successful intravascular placements.

Turner et al. have published a series involving 113 laparoscopy-assisted shunt placements. General surgeons have performed the laparoscopy in all cases and any cases of shunt revisions were excluded. The mean age of their patients was 66 and 80% had normal-pressure hydrocephalus. They reported the one year shunt survival rate to be 91%. It is important to note that no catheter migration or disconnection or any fractures were reported.

The initial 30 cases were performed with some help from the general surgeons to compensate our lack of experience. However, recently, only two neurosurgeons are required for the operation and much shortened procedure duration has been achieved. Other studies report a relatively higher infection rates in concurrent operations with the general surgeons. However, our study showed no statistically significant differences.

Current medical fee for the laparoscopically guided V-P shunt has not been settled by the Health Insurance Review & Assessment Service, and hence its cost is identical to the laparotomy method.

CONCLUSION

Laparoscopically guided insertions of distal catheter is considered as fast and safe method with more advantages than the laparotomy technique. This method allows the exact localization of the peritoneal catheter and confirmation of its patency.

Laparoscopically guided surgeries are neglected in the neurosurgical field due to its unfamiliarity. However, it is an uncomplicated method which does not require help from the general surgeons.

References